

CEE ZDC event centrality determination

BiaoZhang CCNU

Oct 14, 2022

Outline

- Introduction
- Simulation QA
- Event centrality determination strategy
- Summary

biao.zhang@cern.ch

Introduction

Main goal of the ZDC:

- Event plane reconstruction
- Event centrality determination

Structure:

- Plastic scintillator (4 cm) + PMT
- 8 rings, 24 sectors, 192 modules

The collision centrality can only be deduced from the measured charged particles in experiments and the determination of the collision centrality in low-energy collisions has always been a major challenge!

biao.zhang@cern.ch

3

IQMD QA

Multiplicity Entries 800 -700 -600 500 400 300-200 100 10 20 30 40 50 60 70 80 90 Number of track Multiplicity vs b

Generated level(IQMD):

• Strong centrality dependence for Npar

Reconstruction level(IQMD + GEANT):

• Weak centrality dependence for multiplicity (acceptance limitation for ZDC)

IQMD QA

Generated level (IQMD):

• Strong centrality dependence for **total** energy per event

Reconstruction level (IQMD + GEANT):

• Strong centrality dependence for energy loss, however the statistic uncertainty is large

IQMD QA

• additional variables: $R_{ring} = \Delta E_{ring} / \Delta E_{ZDC}$ (the energy loss ratio between each ring with total energy loss) • Three centrality class: central: $b \le 3$ fm, mid-central: $3 \le b \le 7$ fm, peripheral: $b \ge 7$ fm

Boost Decision Tree

- **Ntrees:** number of decision trees;
- MinNodeSize: minimum event numbers for one node ;
- MaxDepth: Maximal layer number;
- nCuts: number of grid points in variable range used in finding optimal cut in node splitting.

https://github.com/hipe4ml/hipe4ml https://github.com/dmlc/xgboost

BDT training input

•Variable used for training: ΔE_{ZDC} , $R_{ring} = \Delta E_{ring} / \Delta E_{ZDC}$, fired channel (multiplicity)

•Three centrality class:

- central: b <= 3 fm
- mid-central: 3 < b < 7 fm
- peripheral: b >= 7 fm

biao.zhang@cern.ch

BDT training output

- Scores are used to select the centrality class
- Mode performance with ROC curve : AUC > 0.95

- •Feedback the scores of each class:
 - prob(central) + prob(mid-central) + prob(peripheral) = 1

Model application

• Apply models on 200000 mix-event

• Purity and efficiency for the BDT selection

Score > 0.85	central	mid-central	peripheral
Purity	93%	91%	98%
Efficiency	49%	25%	78%

- High purity with the good efficiency
- For mid-central: affected by the volume fluctuation of the initial state of the collision system

- **BDT selection**: **BDT cut**

- Gen: truth

biao.zhang@cern.ch

10

Summary

1. Simulation QA

- Rec. Level is not perfect to distinguish the centrality class
- 2. Study the centrality determination with BDT
 - performance of the BDT model is good

centrality classes

• High purity for the event centrality classification (> 90%), efficiency is good enough (> 25%) 3. The simulation results show good performance of using ZDC to determine event

11

Backup

Importance of vars:

biao.zhang@cern.ch