The sPHENIX Calorimeter Readout Electronics

E.J.Mannel
For the PHENIX Collaboration
Aug 6, 2015

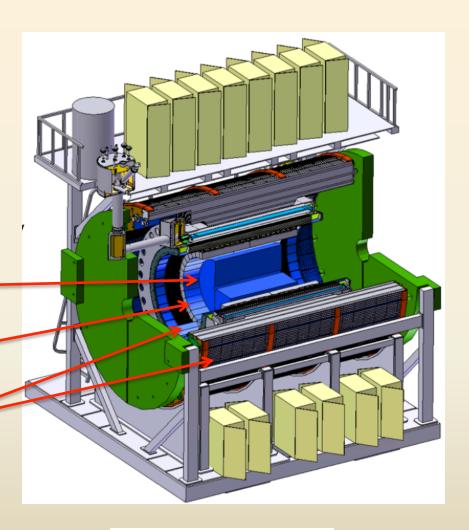
Physics Observables

- Jet Program:
 - Modification of inclusive jet spectra
 - Heavy-flavor tagged jets
 - Hadrons to high p_T
 - Direct photons
 - Fragmentation functions to high z
- Heavy Flavor Programs
 - High pT D's
 - Upsilons
 - X+jet correlations
- Physics delivered via Au+Au, p+Au and p+p at Vs NN up to 200 GeV

mannel@bnl.gov

The sPHENIX Concept

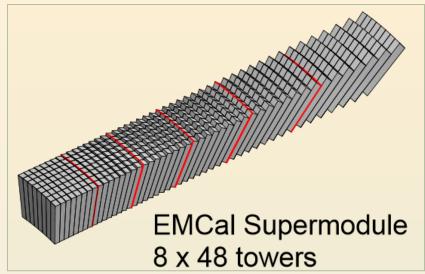
- Uniform acceptance: $-1 < \eta < 1$ and $0 < \phi < 2\pi$
- High resolution tracking; 1.5T solenoid field
- Hadronic calorimeter serves as flux return
- Compact electromagnetic calorimeter
- Solid-state photo detectors (SiPMs); operate in magnetic fields, low cost
- Common electronics for both calorimeters
- Digitization of signals provides a digital pipeline
- 15KHz data rate allows for large unbiased A+A data samples
- Upgradeable for forward physics, and eRHIC physics.

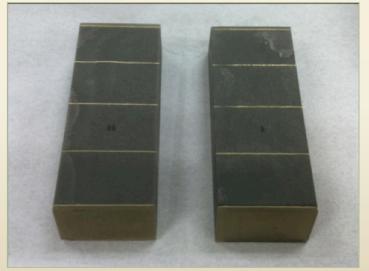


The sPHENIX Reference Detector

mannel@bnl.gov

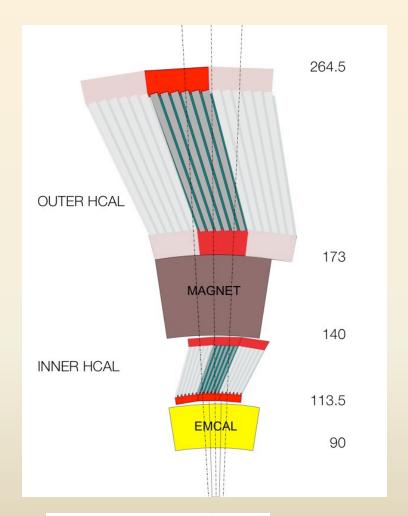
- A complete rebuild of the PHENIX detector
- Optimized for JET physics at RHIC at BNL
- Based on the 1.5T BaBar
 S.C. Solenoid
- Central Tracking
- ElectromagneticCalorimetery
- Hadronic Calorimetery
- Designed with forward upgrades in mind





The EMCal Detector

- Located at a radius of $^{\sim}$ 90 to 110 cm and projective in η and ϕ
- Tungsten-scintillating fiber design
 - 18 X_{o} , $1 \text{ }\Lambda_{\text{l}}$
 - $\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025$
 - 96 x 256 readout channels
 - 2-D projective
- 4 Silicon Photomultipliers
 (SiPMs) coupled to the inner
 radius of the EMCal using a
 light mixing block.



The HCal Detector

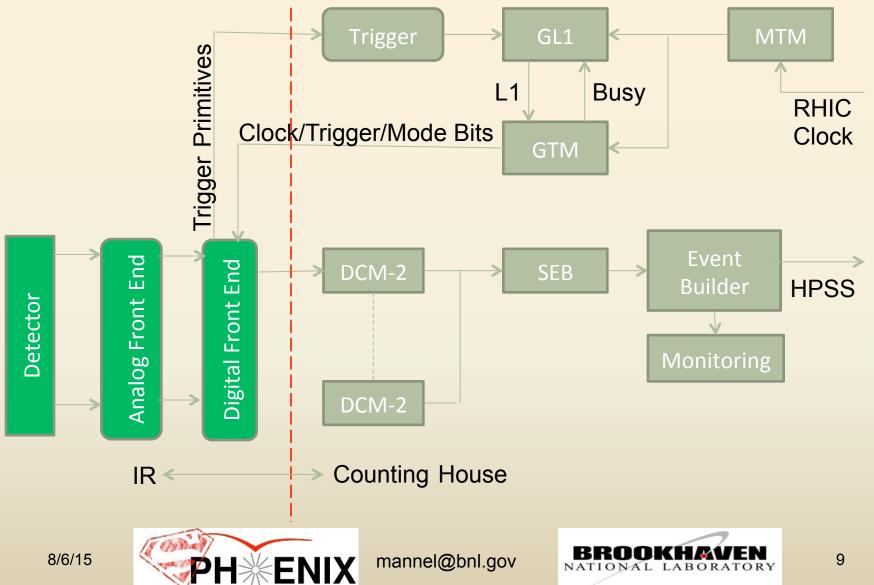
mannel@bnl.gov

- Steel and scintillating tiles with wave shifting fibers
 - 2 Longitudinal segments
 - Inner HCal located inside the solenoid
 - Outer HCal serves as flux return
 - $\Delta \eta \times \Delta \phi \approx 0.1 \times 0.1$
 - 5 tiles per tower
 - 2 x 24 x 64 readout channels
 - $-\Delta E/E < 100\%/\sqrt{E}$ (single particle)
- 5 SiPMs per tower
 - Couple to both ends of WLS fiber
 - Single analog channel per tower

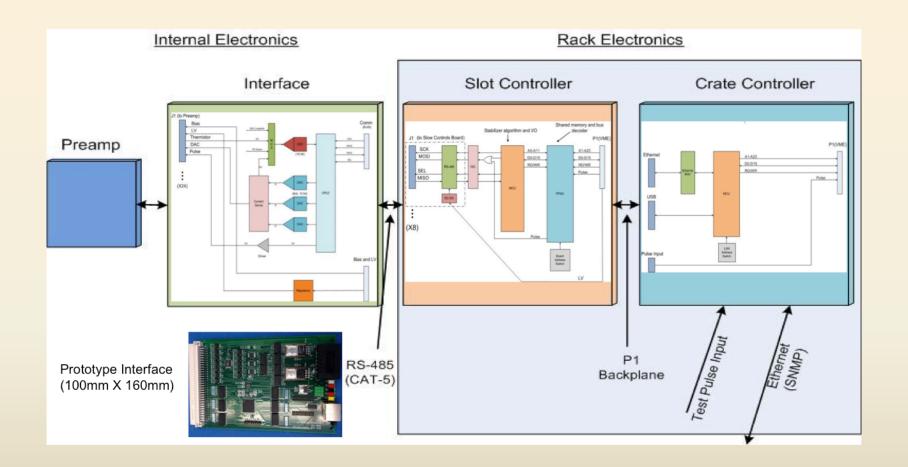
Electronics Design Philosophy

- Minimize custom ASICs -> off the self components
- Same optical sensor for EMCal and HCal
- Similar readout for both EMCal and HCal
- Same digitizers for both systems
- Minimize On-Detector power/heat load
- Use PHENIX DAQ
 - DCM-II
 - Event Builder
 - Data Logging
 - Monitoring
- Common biasing and low voltage systems

Electronics Design Overview

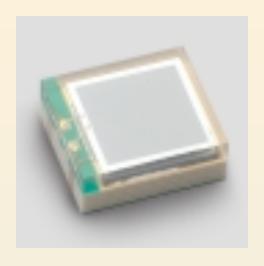

- SiPM preferred optical sensor:
 - Large gain, ~10⁵
 - Dynamic range: ~10⁴
 - Immune to magnetic fields
- Local amplification and gain stabilization:
 On Detector
- 2mm Hard Metric cable used to transmit analog signals to digitizers; cross talk measured to 10⁻³ level.
- Digitization nearby (off detector) using 14 bit ADCs at 60MHz.
- Digitizer boards produce trigger primitives for trigger generation.

- Potential concerns:
 - Temperature dependence
 - Neutron Damage



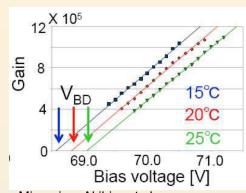
DAQ Overview

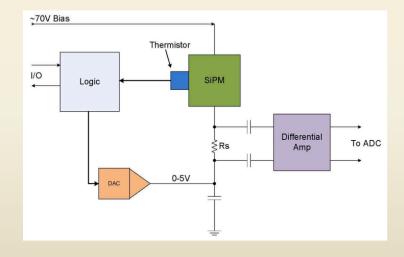
Front End Overview



Optical Sensors

- Hamamatsu MPPC (SiPM):
 - Model S125762 is reference device
 - 15μm microcell
 - $-3x3 \text{ mm}^2$
 - 40K cells
- Devices have unique features:
 - Immune to magnetic fields
 - High gain, 10⁵
 - Temperature dependence
 - Sensitive to neutron damage


Hamamatsu S12572-015

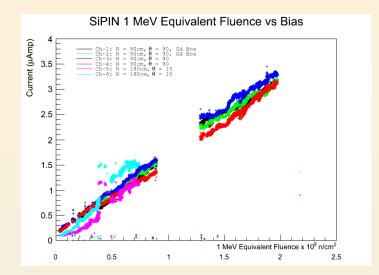


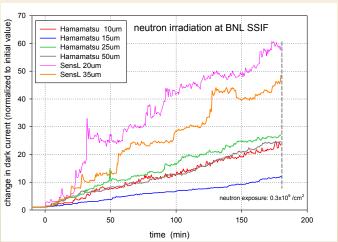
SiPM Temperature Dependence

- SiPM gain depends on over voltage
- SiPM gain is temperature dependent: ~10%/°C
- Local thermistor to monitor temperature
- Positive feedback loop will be used to adjust the voltage to compensate for temperature fluctuations

Minamino, Akihiro at al.
"T2K experiment: Neutrino Detectors"

Effects of Neutrons on SiPMs


- Displacement damage due to neutrons
- Increased leakage current impacts signal to noise
- Study leakage current at:


LANL: LANCE

IU: LENS

PHENIX IR

- Measure change in leakage current as a function of neutron fluence
- Mitigation options:
 - Smaller pixel size: need to optimize size and photon detection efficiency
 - Cooling

Neutron exposure to 0.3 x 10⁹ /cm²

Hamamatsu S12572 devices and SensL FC series devices.

Status and Prospects for sPHENIX

- sPHENIX is an integral part of the PHENIX and BNL plans after 2016, the final data run for PHENIX.
- The BaBar magnet has been delivered to BNL, Jan 2015, and testing has begun.
- Successful DOE science review, April 2015
- BNL office of Nuclear and Particle Physics has issued an open invitation to join a new scientific collaboration, July 2016
- Detector R&D work is progress with the next prototype beam test scheduled, April 2016
- PHENIX last run, Run-16, followed by decommissioning, July 2016
- Construction of new detector to begin, 2018
- Goal for first data, 2021.

Conclusions

- The sPHENIX MIE has been submitted to DOE and successfully completed a science review
- A reference detector as been designed based on the BaBar SC Solenoid and detector R&D work has started
- A reference design for the calorimeter based on SiPM optical sensors and fast digitization of waveforms is being developed.
 - First generation prototypes have been built and tested
 - Second generation prototypes are being developed for testing with prototype detectors at the FNAL Test Beam Facility in 2016
- A second generation Heavy-Ion Collider detector at RHIC should be ready for exciting physics in 2021.

