Forward Wall performance in April 2012 beam run

Alexander Sadovsky
sadovsky@inr.ru

Institute for Nuclear Research RAS, Moscow

Technical report Preliminary analysis results
Backup

HADES collaboration meeting XXIV May 14-19, 2012
Krakow, Poland
HADES

Forward Wall in HADES

- determination of event plane
- flow analysis
- beam position monitoring

Reconstruction of reaction plane

 (modified transverse momentum method)
Q - reaction plane vector estimate;
$N_{s p}$ - number of fragments;
w_{i} - weight factor:
$w_{i}>0$ if flying forward (curr. $w_{i}=1$), $w_{i}<0$ if flying backward, absolute value is set to mass (m) or charge (Z) of the spectator;
r_{i} - position vector of cell with a hit-i.

Flow analysis and azimuthal angular distributions

Azimuthal angular distribution of K^{+}for peripheral, semi-central and central events in collisions of (Au@1AGeV)+Au by KaoS collaboration. PRL.81(1998)1576-1579

In the frames of Fourier decomposition of obtained azimuthal distributions:

$$
\frac{d N}{d \phi}=C\left(1+2 v_{1} \cos (\phi)+2 v_{2} \cos (2 \phi)\right)
$$

which allows determination of directed (v_{1}) and elliptic (v_{2}) flows one may draw conclusions about the in-plane and out-of plane emission of K^{+}, in-medium potential...
K^{+}in (Au@1AGeV)+Au by (KaoS)

Forward Wall tuning

- Add-On thresholds were optimized
- PMT HV tuned up with cosmics
- ToT (amplitude) calibration with cosmics
- Comparison of cosmics and beam data
- Helium bag and plastic wall installed (δ é suppression)

Beam test August 11

Comparison of ToT distributions from cosmics and beam data

Comparing data from Aug11 test we see much less number of particles in range of "magic peak" due to He box and shield before F-Wall (Wolfgang)

What does "magic peak" mean?

It was found that peak in 550 chan. of ToT distribution ("magic peak") did not move with changing PMT HV.

Cosmics with 6 cells in trigger

Select high amplitudes at cells 233 and 250 and look at ADC distribution at cell 244

"magic peak" at 550 chan. corresponds to low energy deposition (cosmic muons which only partially intersect cells, background in the cave, ...)

The decision:
put MIP peak to higher channels to be well separated from 550 chan.

Forward Wall calibration

Statistics from day 102: small cell 36

Statistics from day 102: middle cell 188

Statistics from day 102: large cell 288

Beam spot at FW

Cuts: Time < 50 ns \&\& ToT > 550 chan.

All cells

Small cells only

Difference between $Z=1$ and 550 chan.

Particles from "550chan" (narrow spot)
mainly contribution from delta electrons

Particles with $\mathrm{Z}=1$
(wide spot)

First look into the data (Apr12 online DST)

- Spectator selection
- Target selection
- Charged pion selection
- Centrality selection
- Pion flow pattern for different centrality selection
- p_{t} : y selection
- Pion flow pattern within different p_{t} : y regions

(Au@1.25AGeV)+Au HADES 2012 test beam ${ }^{[6]}$ (spectator selection by FW information)

hWallHitTIME for all cells

hWallHitCHRG for all cells

Time-of-flight needed by spectators to travel from target to FW cell is selected

WallHit Time (cell35)

All charges accepted, but noise and magic peak are taken away individually

WallHit Charge (cell35)

Vertex selection (not perfect) 7.2 Million events (day 104 be121040\{7,8,9,10\}*.root)

Event plane angular isotropy (day 104 be121040\{7,8,9,10\}*.root)

(shifted $x=x-19.9 \mathrm{~mm}, y=y+6.1 \mathrm{~mm}$, Rmin $=60 \mathrm{~mm}$)

Cell occupancy (for spectators)

FW Y vs. X

rp_phi $\{Q>0\}$

Vertex selection
 10 Million events (day 108 be121081\{6,7\}*.root)

Event plane angular isotropy (day 104 be121040\{7,8,9,10\}*.root)
 (shifted $x=x-23 \mathrm{~mm}, \mathrm{y}=\mathrm{y}+6 \mathrm{~mm}$, Rmin $=0 \mathrm{~mm}$)

FW cell occupancy (for spectators)

Charged pions selection (sys=0,1 all 6 sectors)

Particle Candidate beta vs. momentum $\mathrm{S}=0$ (selected)
β

Particle Candidate beta vs. momentum $\mathrm{S}=3$ (selected)

Particle Candidate beta vs. momentum $\mathrm{S}=1$ (selected)

Particle Candidate beta vs. momentum $\mathrm{S}=4$ (selected)

Particle Candidate beta vs. momentum $\mathrm{S}=2$ (selected)

Particle Candidate beta vs. momentum $\mathrm{S}=5$ (selected)

Multiplicity in TOF as centrality selection

Simulation Au+Au@1.25GeV SHIELD, hGeant, reconstr. w/o mult. trigger simulation

Apr 2012 Au+Au@1.25GeV real data (online DST)

$\pi^{ \pm}$flow patterns for different centrality selectior ${ }^{[3]}$

$50<$ Mtof<60 $\quad 40<M$ Mof <50

30<Mtof<40
20<Mtof<30 more central more peripheral

$\pi^{ \pm}$flow patterns for different p_{t} and rapidity ${ }^{2}$

KaoS π^{+}(Ph.D. A.Foerster)
$0.2 \mathrm{GeV}<\mathbf{p}_{\perp}<\mathbf{0 . 5} \mathbf{~ G e V} 0.5 \mathrm{GeV}<\mathbf{p}_{\perp}<\mathbf{0 . 8} \mathbf{~ G e V}$

ϕ
Abbildung 4.17: Azimutale Verteilungen der π^{+}-Emission für drei Intervalle in normierter Rapidität $y / y_{b e a m}$ (von oben nach unten) und zwei Intervalle im Transversalimpuls p_{\perp} (links und rechts) für Stöße mit $b>5.9 \mathrm{fm}$, für $B_{D}=0.6 \mathrm{~T}$ und $B_{D}=0.9 \mathrm{~T}$ bestimmt aus reduziert gemessenen Triggerereignissen in den K^{+}-Messungen. Die Linien stellen Anpassungen nach Gleichung 4.26 dar, die resultierenden Koeffizienten $v_{1,2}$ sind auf die Aufösung der Reaktionsebene korrigiert.
$\pi^{ \pm}$HADES online DST $8<M(T O F)<40$

dN/d(PhiPi-PhiRP) candidates $08<m$ TOF $<400.3<\mathrm{Pt}<0.6$ Y2

dN/d(PhiPi-PhiRP) candidates $08<m$ TOF $<400.3<\mathrm{Pt}<0.6 \mathrm{Y} 3$
dN / d (PhiPi-PhiRP) candidates $08<\mathrm{mTOF}<400.1<\mathrm{Pt}<0.3 \mathrm{Y} 3$

Summary

- FW hardware (PMT HV and electronics) were tuned before the physics run
- Time (@Oracle) and ToT (ASCII file) calibration of FW was made (Apr12)
- Re-centering of beam spot on FW gives isotropic distribution of the event plane angle
- Analysis of online-DST'Apr12 demonstrates qualitative agreement with previous experiments

Backup slides

$\pi^{ \pm}$
 p_{t} vs. rapidity acceptance (TOF+RPC)

Cuts: Time < 50 ns
ToT > 550 chan.

For particles
with $\mathrm{Z}=1$
(wide spot)

What is explanation of magic 550 ch. peak?

We see the only reason - located at the slope change.

