What performance of new FW is needed?

• Determination of the particle multiplicity:

If accuracy ~1% - one needs occupancy ~10% in one cell.

If accuracy ~0.1% - additionally the identification of double hits in one cell is needed (Z and 2Z – separation) – challenging task.

FW Cell size ??

Highest Z for identification ?? Dynamic range of light yield detection??

• Separation of spectators and produced particles?

Old FW had ~700 ps resolution that allows

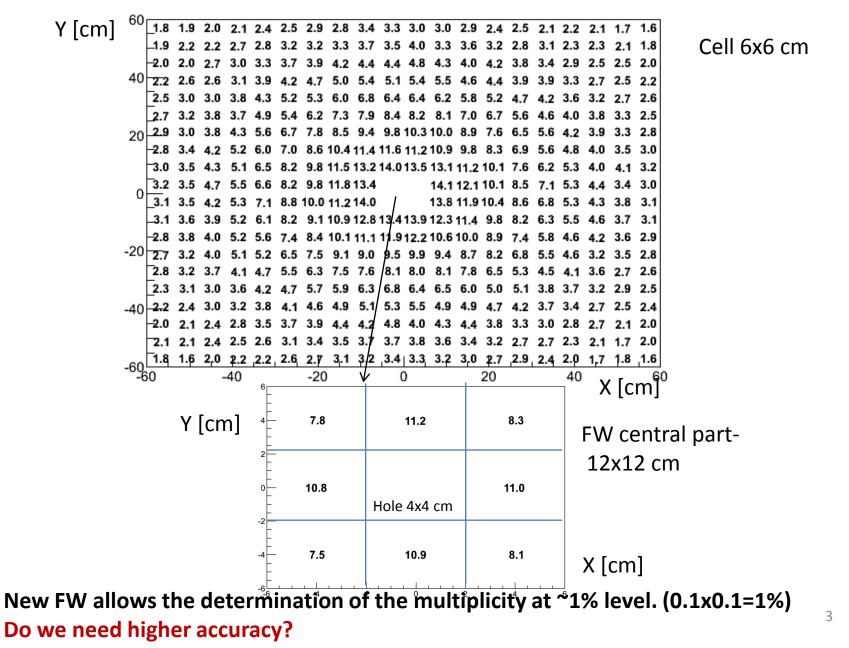
the suppression of low momentum particles.

Time resolution of FW cells??

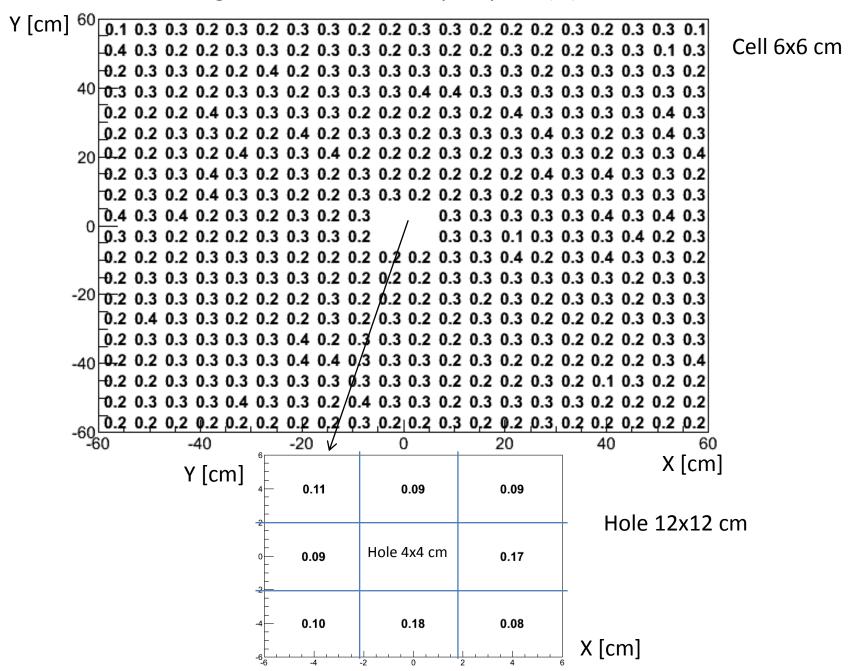
* Identification of fragments (Z² separation) – needs moderate light yield – old FW allows to do that!

• ??

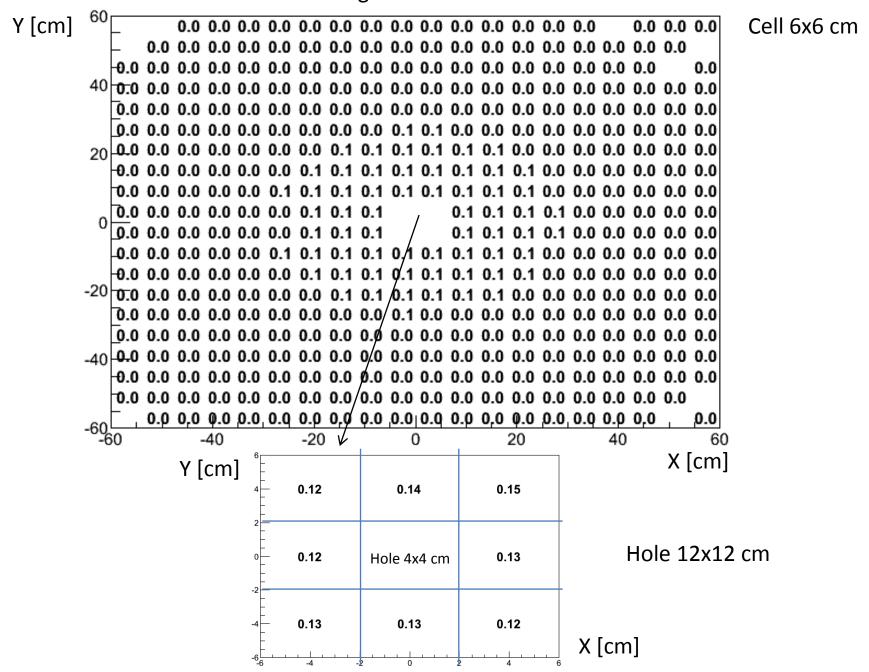
Occupancy in old FW


<u>Au+Au@1.23</u> AGeV, distance to target 5.5 m - FWall - occupancy/cell (%)

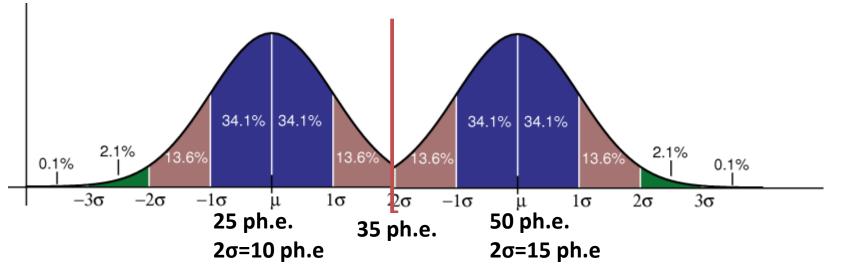
Y [cm]	AurAu									
80		9.6	10.6	11.6	12.1	11.9	10.5	9.3		
60	10.1	12.6	14.6	16.7	18.5	17.2	14.1	11.8	9.9	
40 9.1	12.4	16.4	22.1	27.1	29.7	26.0	21.8	16.5	11.6	9.9
⁴⁰ _10.8	15.1	22.1		9.3 10.3 11.1 13.2				22.1	14.9	10.6
²⁰ _11.4	17.2	26.4	8.9 11.6 10.2 13.2	3.8 4.0 4.2 4.8 3.8 4.1 5.0 5.0	4.1 4.3 4.4 4.5 4.9 4.7 4.8 4.8 5.4 5.3 5.3 5.0 6.1 6.1 6.1 5.9	4.4 4.3 4.1 3.6 5.0 4.4 3.8 3.7	11.2 8.9 12.8 9.6	26.6	17.1	11.5
0 _11.5	17.2	28.4	10.9 13.8 10.7 15.1	4.2 4.8 5.2 5.7 4.4 4.9 5.2 5.9 4.4 4.9 5.1 6.0	6.3 7.1 7.1 6.6 7.3 7.3	5.0 5.1 4.3 4.0 5.9 5.6 5.2 4.5 6.1 5.4 4.9 4.3 6.2 5.5 4.8 4.3	14.6 10.5 14.4 10.7	29.1	17.5	12.2
.20 1 1.3	17.7	26.9		4.0 4.0 5.0 5.7	5.7 6.3 5.8 6.2 5.4 5.3 5.6 5.1 4.5 4.5 5.2 4.7	5.1 5.0 4.4 4.2 4.7 4.6 4.4 3.8 4.5 4.3 4.0 3.9	13.4 9.8	26.9	17.0	11.2
11.1	14.5	22.4	7.7 9.3	11.2 13.1 9.4 9.3	14.4 14.1	13.4 11.5	9.3 7.2	21.3	15.4	10.1
-40 9.3	12.2	16.1	21.7	27.4	29.1	26.6	20.8	15.5	12.6	9.7
.60	9.8	12.0	14.8	17.3	18.6	16.9	14.6	12.0	9.8	
.80	1	9.3	10.3	11.4	12.4	12.4	10.1	9.4		
-80	-60	-4	40	-20	0	20	4	0	60	80 X [cm]


Old FW allows the determination of the multiplicity at $\sim 10\%$ level. (0.3x0.3=9%) Too high occupancy – too rough segmentation in outer FW part.

Occupancy in new FW with cells 6x6 cm².


Au+Au@1.23 AGeV (min. bias) , distance to target 5.5 m - Wall – occupancy/cell (%)

<u>Au+Au@1.23</u> AGeV, for events with b < 3.5 fm (6.6% centrality) distance to target 5.5 m - Wall – occupancy/cell (%)


<u>Au+Au@1.23</u> AGeV, distance to target 5.5 m - Wall – occupancy/cm^2 (%) for fragments with 1 < Z <= 4</u>

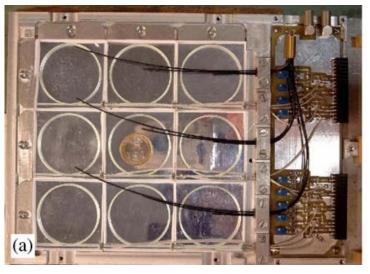
If we need higher accuracy in multiplicity determination, a Z² and 2xZ² identification is each cell is needed

What light yield (LY) for MIP is needed to separate Z² and 2xZ²?

Let's assume that signal from scintillator has a Poisson distribution with mean number of detected photoelectrons N and sigma \sqrt{N} .

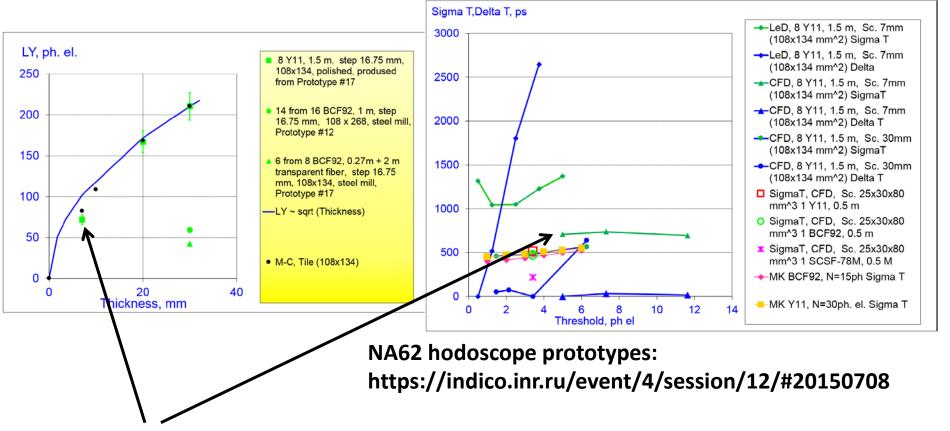
With LY=25 ph.e./Z² the separation of Z² and 2xZ² would be at 95% level. But fraction of 2xZ² events – only 1%. Probably we need 3 sigma separation and LY=55 ph.e.

What scintillator light readout might be used?


Most common technics now is readout with WLS-fiber +SiPM (silicon photomultiplier or micropixel avalanche photodiode).

One example: 15x15x1 cm³ tile has LY=16 ph.e. for single SiPM.

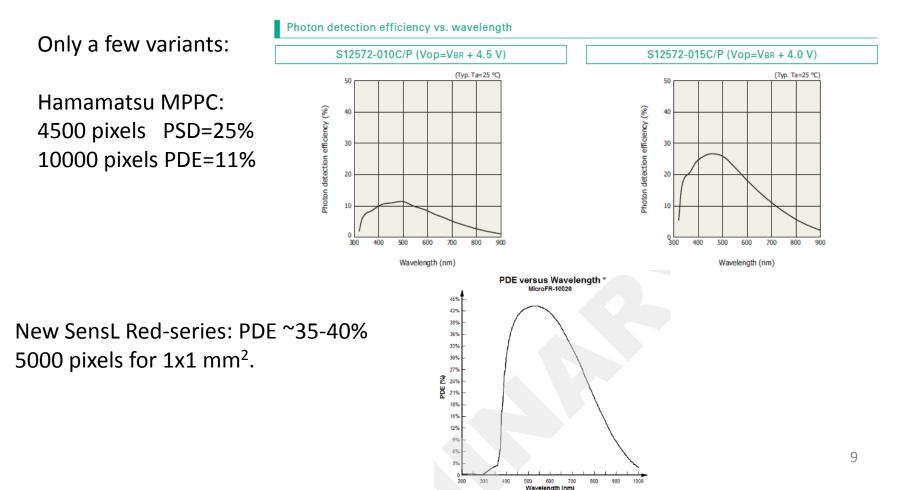
ALICE start calibration system


Another example: 5x5x0.5 cm³ tile has LY=25 ph.e. for single SiPM.

CALICE digital calorimeter (ILC project)

LY of about 25 ph.e. can be obtained without significant efforts. LY of about 55 ph.e. needs some R&D.

Do we need time resolution to separate spectators and produced particles?



For LY=70 ph.e. people got σ_t =700 ps for single SiPM. If to use two SiPM and thick scintillator (~2 cm) one can try to get time resolution below 500 ps.

What SiPM can be used?

For good dynamic range a factor of 36 (Z=1, ... Z=6) the detected signal could achieve 1000 ph.e. or even a few x 1000 ph.e. (for high LY option).

One needs a lot (a few x 1000 ph.e.) of pixels in small 1x1 mm² active area.

