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We present an analysis of proton-number fluctuations in
√

sNN = 2.4 GeV 197Au + 197Au collisions measured
with the High-Acceptance DiElectron Spectrometer (HADES) at GSI Helmholtzzentrum für Schwerionen-
forschung, Darmstadt. With the help of extensive detector simulations done with Isospin Quantum Molecular
Dynamics (IQMD) transport model events including nuclear clusters, various nuisance effects influencing the
observed proton cumulants have been investigated. Acceptance and efficiency corrections have been applied
as a function of fine-grained rapidity and transverse momentum bins, as well as considering local track density
dependencies. Next, the effects of volume changes within particular centrality selections have been considered
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and beyond-leading-order corrections have been applied to the data. The efficiency and volume-corrected
proton number moments and cumulants Kn of orders n = 1, 2, 3, and 4 have been obtained as a function of
centrality and phase-space bin, as well as the corresponding correlators Cn. We find that the observed correlators
show a power-law scaling with the mean number of protons, i.e., Cn ∝ 〈N〉n, indicative of mostly long-range
multiparticle correlations in momentum space. We also present a comparison of our results with Au + Au
collision data obtained at the Relativistic Heavy Ion Collider (RHIC) at similar centralities but higher

√
sNN .

DOI: 10.1103/PhysRevC.102.024914

I. INTRODUCTION

Lattice QCD calculations sustain that, at vanishing bary-
ochemical potential μB and a temperature of order T =
156 MeV, the boundary between hadron matter and a plasma
of deconfined quarks and gluons is a smooth crossover [1,2],
whereas at finite μb and small T , various models based on
chiral dynamics clearly favor a first-order phase transition
[3], suggesting the existence of a critical endpoint (CEP).
Although the QCD critical endpoint is a very distinct feature
of the phase diagram, it cannot presently be located from
first-principle calculations, and experimental observations are
needed to constrain its position. Mapping the QCD phase
diagram is therefore one of the fundamental goals of present-
day heavy-ion collision experiments.

Observables expected to be sensitive to the CEP are fluc-
tuations of overall conserved quantities—like the net electric
charge, the net baryon number, or the net strangeness—
measured within a limited part of phase space [4–6]. Phase
space has to be restricted to allow for fluctuations in the
first place, yet remain large enough to avoid the regime
of small-number Poisson statistics [7]. Tallying the baryon
number event by event is very challenging experimentally,
as, e.g., neutrons are typically not reconstructed in the large
multipurpose charged-particle detectors in operation. It has
been argued, however, that net-proton fluctuations too should
be sensitive to the proximity of the CEP: first, on principal
grounds because of the overall isospin blindness of the sigma
field [4] and, second, because of the expected equilibration of
isospin in the bath of copiously produced pions in relativistic
heavy-ion collisions [8]. Using the net proton number as
a proxy of net-baryon fluctuations and by studying its μB

dependence, one may therefore hope to constrain the location
of the CEP in the phase diagram. This is best achieved
with a beam-energy scan, the characteristic signature being
a nonmonotonic evolution as a function of

√
sNN of any

experimental observable sensitive to critical behavior.
Ultimately, the characteristic feature of a CEP is an in-

crease and even divergence of spatial fluctuations of the or-
der parameter. Most fluctuation measures originally proposed
were related to variances of event-by-event observables such
as particle multiplicities (net electric charge, baryon number,
strangeness), particle ratios, or mean transverse momentum.
Typically, the critical contribution to variances, i.e., second-
order cumulants, is approximately proportional to ξ 2, where ξ

is the spatial correlation length which would ideally diverge at
the CEP. The magnitude of ξ is limited trivially by the system
size but much more so by finite-time effects, due to critical
slowing down, to an estimated 2–3 fm [9–11]. In addition, the
fluctuating quantities are obtained at the chemical freeze-out

point only which may be situated some distance away from
the actual endpoint. This makes discovering a nonmonotonic
behavior of any critical contribution to fluctuation observables
a challenging task, particularly if those measures depend on ξ

too weakly. To increase sensitivity, it was therefore proposed
[5,6,12] to exploit the higher, i.e., non-Gaussian moments
or cumulants of the multiplicity distribution as the latter
are expected to scale like Kn ∼ ξ 5n/2−3. In particular, K4 is
considered [13] to be universally negative when approaching
the CEP from the low-μB region, i.e., by lowering

√
sNN . For

a more complete review of this theoretical background, see,
e.g., Refs. [14–16].

It is also important to keep in mind that other sources
can produce non-Gaussian moments: remnants of initial-state
fluctuations, reaction volume fluctuations, flow, etc. A quan-
titative study of such effects is necessary to unambiguously
identify the critical signal. It is clear that an energy scan
of the QCD phase diagram is mandatory to understand and
separate such nondynamical contributions from the genuine
CEP effect, the latter being a nonmonotonic function of the
initial collision energy

√
sNN as the CEP is approached and

passed over. The fact that non-Gaussian moments have a
stronger than quadratic dependence on ξ causes them to be
much more sensitive signatures of the CEP. Because of the
increased sensitivity, they are, however, also more strongly
affected by the nuisance effects mentioned above and this
must be investigated very carefully.

Various fluctuation observables have been scrutinized in
heavy-ion collisions from Super Proton Synchrotron (SPS)
to Large Hadron Collider (LHC) energies: at the SPS in
particular, balance functions and scaled variances of charged
particles [17,18], dynamical fluctuations of particle ratios
[19,20], as well as proton intermittencies [21–24]; at the
Relativistic Heavy Ion Collider (RHIC) and LHC, net-proton-
number fluctuations [25–28], net-charge fluctuations [29–31],
and net-kaon fluctuations [32]. In this context, the first RHIC
beam-energy scan, covering center-of-mass energies of

√
sNN

= 7.7–200 GeV, provided indications of a nonmonotonic
trend with decreasing energy of the net-proton fluctuations
[27,33]. Unfortunately, the limited statistical accuracy of these
data as well as their low-energy cutoff do not yet allow for
firm conclusions. A second approved scan aims, however, at
greatly improving the statistical quality and at extending the
measurements down to

√
sNN = 3 GeV by complementing the

standard collider mode with a fixed-target arrangement [34].
Here we present results from a high-statistics

measurement of proton-number fluctuations in the
reaction system 197Au + 197Au at

√
sNN = 2.4 GeV

done with the charged-particle spectrometer HADES
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FIG. 1. Schematic explosion view of the HADES experiment.
The forward wall hodoscope (FWALL) used for centrality selection
(see text) is not shown on this picture.

at the SIS18 heavy-ion accelerator. In Sec. II of this
article, a brief description of the experiment, as well
as of the analysis procedures, is given. In Sec. III, the
reconstructed proton multiplicity distributions are presented
and their relevant features in terms of moments, cumulants,
and factorial cumulants are discussed. In Sec. IV, we show
and discuss the centrality and acceptance dependencies of
(net-)proton-number fluctuations. Finally, Sec. V summarizes
and concludes the paper.

II. THE Au + Au EXPERIMENT

A. The HADES setup

The six-sector high-acceptance spectrometer HADES
operates at the heavy-ion synchrotron SIS18 of GSI
Helmholtzzentrum für Schwerionenforschung in Darmstadt,
Germany. Although its original design was optimized for
dielectron spectroscopy, HADES is in fact a versatile charged-
particle detector with large efficiency, good momentum res-
olution, and high trigger rate capability. The HADES setup
consists of an ironless, six-coil toroidal magnet centered on
the beam axis and six identical detector sectors located be-
tween the coils. With a nearly complete azimuthal coverage
and spanning polar angles θ = 18–85◦, this geometry results
in a laboratory rapidity acceptance for protons of y � 0.1–1.8.
In the configuration used to measure the data discussed here,
each sector was equipped with a central hadron-blind ring-
imaging Cherenkov (RICH) detector, four layers of multiwire
drift chambers (MDC) used for tracking (two in front of
and two behind) the magnetic field volume, a time-of-flight
detector made of plastic scintillator bars (TOF) at angles
θ > 44◦ and of resistive-plate chambers (RPC) for θ < 45◦,
and a preshower detector. Figure 1 shows a schematic view
of the setup; more detailed technical information can be
found in Ref. [35]. Hadron identification in HADES is based
mainly on particle velocity, obtained from the measured time
of flight, and on momentum, reconstructed by tracking the
particle through the magnetic field using the position data
from the MDC. Energy-loss information from the TOF as well
as from the MDC tracking chambers can be used to augment

the overall particle identification power. The RICH detector,
specifically designed for electron and positron candidate iden-
tification, was not used in the present analysis.

The event timing was provided by a 60-μm-thick
monocrystalline diamond detector (START) positioned in the
beam pipe 25 mm upstream of the first target segment. The
diamond detector material [36] is radiation hard and has
high count rate capability, large efficiency (ε � 0.9), and
very good time resolution (σt � 60 ps). Through a 16-fold
segmentation in x direction (horizontal) and in y direction
(vertical) of its double-sided metallization, START also pro-
vided position information on the incoming beam particles,
essential for beam focusing and position monitoring during
the experiment. Combined with a multihit-capable time-to-
digital converter (TDC), the fast START signal can be used to
recognize and largely suppress event pileup within a time slice
of ±0.5 μs centered on an event of interest. Furthermore, as
discussed below, the easily identifiable 197Au + 12C reactions
in the diamond material of the START can be used to set a
limit on background from Au reactions on light nuclei (H, C,
N, and O) in the target holder material.

A forward hodoscope (FWALL), positioned 6.9 m down-
stream of the target and covering polar angles of θ =
0.33–7.2◦ was used to determine the reaction plane angle and
the event centrality. This device comprises 288 square tiles
made of 25.4-mm-thick plastic scintillator and each read out
with a photomultiplier tube. The FWALL has limited particle
identification capability based on the measured time of flight
and energy loss in the scintillator.

The 197Au + 197Au reactions investigated took place in a
stack of 15 gold pellets of 25 μm thickness, adding up to
0.375 mm and corresponding to a nuclear interaction proba-
bility of 1.35%. Each of the 2.2-mm-diameter gold pellets was
glued onto the central 1.7-mm eyelet of a 7-μm-thick Kapton
holding strip. These strips were in turn supported by a carbon
fiber tube of inner diameter 19 mm and wall thickness 0.5 mm,
realizing an inter-pellet spacing (pitch) of 3.7 mm. All target
holder parts were laser cut with a tolerance of 0.1 mm in all
dimensions (see Ref. [37] for more details). The total length of
the segmented target assembly was 55 mm. This design (target
segmentation, low-Z and low-thickness holder) was optimized
to minimize both multiple scattering of charged particles and
conversion of photons into e+e− pairs in the target. It also
helped to minimize production of spallation protons, that is
emission of protons from any material in the target region
through secondary knockout reactions induced by primary
particles.

B. Online trigger and event selection

In the present experiment, a gold beam with a kinetic
energy of Ekin = 1.23A GeV and an average intensity of
1–2 × 106 particles per second impinged onto the segmented
gold target. Several physics triggers (PT) were implemented to
start the data readout based on hardware thresholds set on the
analog multiplicity signal corresponding to at least 5 (PT2)
or 20 (PT3) hits in the TOF detector, and coincident with
a signal in the in-beam diamond START detector. The PT2
trigger was downscaled (÷ 8) and PT3 was the main event
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FIG. 2. Distribution of the total number of hits in the HADES
time-of-flight detectors TOF and RPC in the 43% most central Au +
Au events accepted by the PT3 trigger. The tiny contribution of order
�2 × 10−4, visible for Nhit > 260, is attributed to event pileup.

trigger covering the 43% most central collisions.1 In total,
2.1 × 109 high-quality PT3 events were recorded of which,
for performance reasons mostly, we used only a subset of
1.6 × 108 events in the current analysis.

C. Event pileup

Running the HADES experiment with high beam currents
bears the danger of event pileup, that means of having a
sizable chance that two or even more consecutive (minimum
bias) beam-target interactions take place within the readout
window opened by a trigger. Such events appear to have
higher than average track multiplicity and, if their fraction
becomes sufficiently large, they will have a noticeable impact
on the observed event-by-event particle-number fluctuations.
The multihit TDC of the START detector provided, however,
the possibility to reject piled up events by counting the number
of registered incident beam particles within a ±0.5 μs time
window centered on any accepted trigger. However, because
of the finite efficiency of the START (determined to be
�90%), a remaining small contribution of pileup events is
still visible in Fig. 2 as a shoulder at large Nhit values. From
the size of the resulting “step,” one can estimate the overall
pileup probability in our event sample to be �2 × 10−4.

In fact, the contamination of identified proton yields by
pileup turns out to be even much smaller. Because of its
excellent timing properties, the START allowed us to con-
tinuously monitor the instantaneous beam rate, typically of
order 4–8 ions/μs, i.e., a factor of 4 larger than the rate
averaged over beam spills. With this rate and a total beam
interaction probability of 1.7% (on START, gold targets,

1The centrality range selected by the HADES trigger was deter-
mined with Glauber–Monte Carlo calculations [38].
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FIG. 3. Total number of charged hits in the time-of-flight detec-
tors (TOF and RPC) as a function of the reconstructed event vertex
vz along the beam axis z. The 15 gold target segments are clearly
separated from the diamond START detector as well as from one
another; the horizontal solid line indicates the vertex cut used to
select reactions in the targets. Note that the faint high-Nhit tail (Nhit >

100) visible for the START detector is due to Au + Au reactions in
its thin gold platings.

and Kapton combined), and realizing that particle identifi-
cation via momentum-velocity correlation implicitly puts a
tight constraint on the flight time of tracks (with |�t | <

1.5 ns) for them to fulfill the required p − β congruence, one
can estimate the pileup effect on identified particles to be
�3 × 10−5. As discussed further below, this value is low
enough for pileup to be of no concern to our fluctuation
analysis.

D. Offline event selection and centrality definition

Offline, events were selected by requiring that the global
event vertex, determined from reconstructed tracks with a
resolution of σx = σy � 0.7 mm and σz � 0.9 mm, was within
the ≈60 mm extension of the segmented target. Figure 3
shows the combined number of hits observed in the RPC
and TOF as a function of the reconstructed event vertex vz

along the beam axis. The diamond START detector and the
segmented gold targets are clearly distinguishable along z, and
the difference in hit multiplicity between Au + Au reactions
on the target pellets and Au + C reactions on the diamond
detector is very evident as well. The amount of reactions on
the START detector accepted by the PT3 trigger can further-
more be used to put an upper limit on a possible contamination
from reactions on the Kapton holding strips (containing H, C,
N, and O) by comparing the effective thickness and resulting
interaction probability in Kapton and START, respectively.
Considering the intricate crisscross geometry of those strips
[37], the diameter of their central eyelet, and the tight focus
of the gold beam, we estimate that reactions on Kapton can
contaminate the recorded rate of semicentral Au + Au events
at most on the level of 10−4. This is also supported by control
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FIG. 4. Ratio of transverse to longitudinal energy ERAT as a
function of the reconstructed event vertex along the beam axis z. The
horizontal dashed line indicates the ERAT > 0.55 cut used to further
suppress Au + C reactions in the Kapton strips of the target holder.
The solid line delimits the vertex cut applied on the target region.

data taken with the Au beam vertically offset by 3.5 mm such
as to miss the gold targets altogether and hit only Kapton.
Note finally that the Au + C contamination affects mostly the
peripheral event classes whereas central Au + Au events are
basically free from it because of their much higher average hit
multiplicity.

As the lateral event vertex resolution of σ⊥ � 1.1 mm was
not sufficient to fully avoid reactions on the Kapton strips,
in the analysis, this background has been reduced further by
applying a cut on the quantity ERAT defined as the ratio of total
detected transverse to total detected longitudinal energy in the
laboratory,2 namely

ERAT = E tot
⊥

E tot
‖

=
∑

i E⊥,i∑
i E‖,i

=
∑

i Ei sin θi∑
i Ei cos θi

, (1)

where Ei and θi are the particle’s total energy and polar
angle, respectively, and the index i runs over all detected and
identified particles. The ERAT > 0.55 cut applied, shown in
Fig. 4 as horizontal dashed line, suppresses Au + C reactions
by an additional factor of 4, while losing less than 2% of
the Au + Au events. The remaining Au + C contamination
is thus at most 2.5 × 10−5 for all centralities. Our schematic
simulations show that this level of contamination is of no
concern for our proton cumulant analyses, in agreement also
with conclusions resulting from similar investigations dis-
cussed in Refs. [40,41]. Finally, by monitoring the mean
charged particle multiplicity per each HADES sector,3 we
have made sure that in the data runs selected for the present

2Note that our definition of ERAT differs from the one used for
centrality determination in Ref. [39].

3Averaged over sets of 50 000–100 000 PT3 events, corresponding
to about 2–3 min of run time.

TABLE I. Nuisance effects on the proton multiplicity measured
in

√
sNN = 2.4 GeV Au+Au collisions with HADES. Listed are the

estimated maximum relative contributions of background events (top
rows) and of background to the proton yield arising within the events
of interest (bottom rows). For comparison, the expected antiproton
yield, estimated from a thermal model fit to the various particle yields
observed at freeze-out in the 10% most central events, is listed as
well.

Nuisance effect Relative contribution

Event pileup �3 × 10−5

Au+C reactions �2.5 × 10−5

PID impurities �10−3

Knockout reactions �3 × 10−3

Hyperon decays �6.5 × 10−4

Antiprotons (model fit) �2 × 10−8/evt

analysis no hardware conditions occurred that could have
caused substantial drifts or even jumps of the proton yield.
All estimates of various background contributions potentially
affecting the proton multiplicities measured in our experiment
are summarized in Table I.

In the HADES experiment, event centrality determination
is usually done by putting a selection on either the total
number of hits Nhit in the time-of-flight detectors TOF and
RPC or on the total number of tracks Ntrk reconstructed in
the MDC [38]. It is, however, important to realize that in
our investigation of particle-number fluctuations, correlations
exist between the observable of interest, that is, the number
of protons Nprot emitted into a given phase space and the Nhit

or Ntrk observable used to constrain the event centrality. At
a bombarding energy of 1.23A GeV, protons constitute by
far the most dominant particle species and, as every detected
proton will produce at least one hit and also one reconstructed
track, we expect indeed very strong autocorrelations when
using Nhit or Ntrk as centrality selectors. A systematic simula-
tion study [42] done with UrQMD transport model events has
already demonstrated the disturbing effect of autocorrelations
on fluctuation observables. To avoid or, at least, minimize
such effects, we have instead used for centrality determination
the cumulated charge �QFW of all particles observed in the
FWALL detector. Figure 5 shows this measured quantity as
a function of the number of hits in the HADES time-of-
flight detectors. The two observables anticorrelate, as ex-
pected, demonstrating that �QFW is also a useful measure
of centrality. As discussed in more detail in Sec. V, a weak
anticorrelation between Nprot and �QFW does exist as well,
but its influence on the proton-fluctuation observables can be
corrected for. The coverage of the FWALL being restricted to
a range of 0.33–7.2◦ in polar angle results in the loss of the
most peripheral events where the projectile fragment passes
undetected through the central hole left open around the beam
pipe. For such events, �QFW tends to decrease again, visible
as a down-bending in Fig. 5, which contaminates the most
central selections with peripheral events. This can be cured,
i.e., the monoticity of �QFW with centrality can be restored,
by applying a rather loose 2D cut on �QFW vs Nhit. Centrality
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FIG. 5. Sum signal �QFW measured in the forward wall vs
number of hits Nhit in the TOF and RPC. The black long-dashed line
indicates a loose 2D cleaning cut applied to remove the contamina-
tion from peripheral events. Centrality selections, e.g., in steps of 5%,
were done by applying additional, more restrictive cuts on �QFW as
indicated by the set of short-dashed horizontal lines.

selections are realized, as indicated in Fig. 5, by additional
dedicated cuts on �QFW.

From Glauber–Monte Carlo calculations and also a direct
comparison with UrQMD model calculations (version 3.4)
[43], we determined that the PT3 hardware trigger selected
only the 43% most central events [38]. For the fluctuation
analysis, a finer centrality binning was realized by applying
on the measured �QFW signal a sequence of 5% cuts or, in
some instances, 10% cuts. The behavior of the various cuts
was studied in detailed detector simulations using the GEANT3
software package [44]. For that purpose, Au + Au events were
generated with the Isospin Quantum Molecular Dynamics
(IQMD) transport model (version c8) [45,46] supplemented
with a minimum spanning tree (MST) clusterizing algorithm
in coordinate space [47], which allowed us to obtain events
including bound nuclear clusters like d , t , 3He, 4He, etc. At the
bombarding energies where HADES takes data, the clusters
contribute substantially to the track density; in our Au + Au
data they correspond indeed to about 40% of the charged
baryons detected [48].

E. Proton reconstruction and identification

Charged-particle trajectories in HADES were recon-
structed using the MDC hit information [35,49]; in this
procedure, the trajectories were constrained to start from
the vicinity of the global event vertex. The resulting tracks
were subjected to several quality selections provided by the
hit matching and Runge-Kutta track fitting algorithms. Fi-
nally, the retained tracks were spatially correlated with time-
of-flight information from TOF or RPC, and—for lepton
candidates—also with ring patterns found in the RICH as
well as electromagnetic shower signatures from the preshower
detector.
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FIG. 6. Particle identification (PID) based on particle velocity
vs momentum correlations as well as on energy loss vs momentum
correlations. Shown in panel (a) is β = v/c of the detected particle,
with velocity v obtained from the time of flight, as a function of its
p/q, where p is the particle momentum and q is its charge. Note
that the weak branch lying between p and d/α are 3He nuclei. The
dashed curves delineate the condition used to select protons. The
weak 3He contamination remaining in this selection is suppressed by
applying an additional condition on the energy-loss relation, dE/dx
vs p/q, shown in panel (b) for the masses fulfilling 0.6 < M/q <

1.6 GeV/c2.

Protons were identified by using their velocity versus mo-
mentum correlation as well as their characteristic energy loss
in the MDC. As seen in Fig. 6(a), the proton branch is the
most prominent one next to the charged pions and light nuclei
(deuterons, tritons, and He isotopes). A ±2σ -wide cut on this
branch4 was used to select the protons. An additional condi-
tion on the energy-loss signal in the MDC, shown in Fig. 6(b),

4Applying a ±2σ cut on velocity per 40 MeV/c momentum bin.
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FIG. 7. Particle mass distribution of reconstructed tracks—as
deduced from particle velocity, momentum, and energy loss—for
positive particles within the phase-space bin of interest (y = y0 ± 0.5
and 0.4 < pt < 1.6 GeV/c). The masses selected by the proton
cut (see Fig. 6) as well as the Z = 1 condition are shown in red.
Contaminations from lower masses (π+, K+) and higher masses (d ,
t , He) are below 0.1%, resulting in an overall proton purity >0.999.

was applied to further suppress a potential residual contamina-
tion caused by the adjacent 3He branch, resulting in a proton
purity of �0.999 for tracks with 0.4 < pt < 1.6 GeV/c and
y = y0 ± 0.5, where y0 = 0.74 is the Au + Au center-of-mass
rapidity. This is plainly visible in the reconstructed particle
mass spectrum, shown in Fig. 7 with and without the proton
selection cuts: The about thousandfold weaker K+ signal on
the left side of the proton peak is evidently of no concern
and the few-percent 3He signal, visible as a weak branch in
Fig. 6, is indeed efficiently relocated to its correct position
when assigning the charge Z = 2 with help of the dE/dx
information. Notice that, with the charge assignment, the 4He
hits are likewise moved to their proper position in the mass
spectrum.

We have investigated the production of secondary protons,
i.e., protons knocked out from target and near-target material
by primary hadrons (mostly neutrons, protons, and pions), us-
ing our GEANT3 detector simulation with GCALOR as hadronic
interaction package [50]. We found that their relative contri-
bution to the proton yield in the phase space bin usable for the
fluctuation analysis (y ∈ y0 ± 0.5 and 0.4 < pt < 1.6 GeV/c,
see below) is of order �3 × 10−3 (50% from p, 45% from n,
and 5% from π reactions). Furthermore, the relative contri-
bution to the total yield due to protons stemming from weak
decays of � and �0 hyperons produced in the collision can
be estimated from data to be of order 6.5 × 10−4 only [51].
These contributions to the proton multiplicity are also listed
in Table I and their implications on the fluctuation analysis
are discussed in Sec. VII. Note finally that the production of
antiprotons is far below threshold at our bombarding energy
and does not contribute any observable hits in the detector.
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FIG. 8. Identified proton yield as a function of laboratory rapid-
ity y and transverse momentum pt . The acceptance is constrained
by the geometry of HADES (θ = 15–85o) and by momentum cuts
(0.3 < p < 3 GeV/c). Thin dashed curves indicate the polar angle,
in steps of 10o, and proton momentum, in steps of 0.5 GeV/c. The
dashed rectangle corresponds to the phase space selected for the
fluctuation analysis: y = y0 ± 0.5 and 0.4 < pt < 1.6 GeV/c, where
midrapidity y0 = 0.74.

From a thermal model fit to the particle yields measured at
freeze-out, we estimate the antiproton yield to be of order
2 × 10−8/event in the 10% most central Au + Au collisions.

F. Proton acceptance

The yield of identified protons is shown in Fig. 8 as a
function of laboratory rapidity y and transverse momentum
pt . The proton phase-space coverage is constrained by the
polar angle acceptance of HADES (θlab = 15–85◦) as well
as by a low-momentum cut (≈0.3 GeV/c) due to energy
loss in material and deflection in the magnetic field, and an
explicit high-momentum cut (3 GeV/c) applied in the proton
identification. This results in a useful rapidity coverage of
about 0.1–1.5, which is quite well centered on the midrapidity
y0 = 0.74 of the 1.23A GeV fixed-target reaction. However, to
guarantee a close to uniform and symmetric about midrapidity
acceptance, we have restricted the proton-fluctuation analysis
to the rapidity range y = 0.24–1.24 and transverse momentum
range pt = 0.4–1.6 GeV/c resulting in the dashed rectangle
overlaid on Fig. 8. Notice that these selections leave two small
open corners in the acceptance. In addition, the azimuthal
acceptance of HADES is also not complete because of the six
gaps occupied by the magnet cryostat [35]. All of these are
taken into account in the efficiency corrections based on full
detector simulations, as discussed in Sec. III.

G. Characterizing the proton multiplicity distributions

Before discussing corrections for detector inefficiency, we
first take a look at the observed proton multiplicity distri-
bution, that is the distribution of the number Np of protons
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FIG. 9. Raw multiplicity distributions of fully reconstructed and identified protons in Au + Au collisions within a given phase-space bin
(y ∈ y0 ± �y and pt = 0.4–1.6 GeV/c) and for different centrality selections based on the observable �QFW, using 10%-wide bins (top) or
5%-wide bins (bottom).

reconstructed and identified within the phase space delin-
eated in Fig. 8. We have histogrammed this distribution for
various centrality selections based on the FWALL �Q sig-
nal, as discussed before, and for various phase-space bins
y ∈ y0 ± �y (with �y = 0.05–0.5) and pt = 0.4–1.6 GeV/c.
Figure 9 shows the proton multiplicity distributions obtained
in 5% or 10% centrality bins, and for a rapidity bin of �y =
0.2 or �y = 0.5, respectively. The basic idea of the fluctu-
ation analysis is to remove from these “raw” distributions
any distorting nuisance effects, namely detector inefficiencies
and reaction volume fluctuations, and then to systematically
characterize their shape in terms of higher order moments
and/or cumulants. Procedures to achieve this are discussed
in the following two sections. Because of the comfortably
large size of our proton sample, resulting in �2 × 107 and
�4 × 107 events per centrality selection for the 5% and 10%
bins respectively, the shape of the proton distributions can be
followed in Fig. 9 over more than six orders of magnitude.
From this, one may expect [52,53] that their cumulants can be
extracted up to fourth order at least with sufficient statistical
accuracy (i.e., <5–10%) to quantify significant deviations

from a simple Poisson or binomial baseline. In fact, in case of
large deviations from such a baseline, much smaller statistics
may be needed, as has been argued in Ref. [54].

As already stated in the introduction, conserved quantities
like baryon number, electric charge, or strangeness within a
restricted phase space and, in particular, their critical or pseu-
docritical behavior are usually characterized by the higher
order cumulants of the observed particle number distribution.
In an experiment, it is often convenient to first determine the
moments 〈Nn〉 or the central moments 〈(N − 〈N〉)n〉 about the
first moment. Then, from the moments, all other quantities
like factorial moments 〈N (N − 1)(N − 2) · · · 〉, cumulants, or
factorial cumulants can be computed with ease (see, e.g.,
Ref. [58]). In the literature [15,55,56] various notations5 for
all of those quantities are in use and we do not want to propose

5Asakawa and Kitazawa use, e.g., 〈Nn〉 for moments, 〈Nn〉 f for
factorial moments, 〈Nn〉c for cumulants, and 〈Nn〉 f c for factorial
cumulants [15].
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yet another one here. We just follow Bzdak and Koch [55]:
Mn stands for moments of order n, Kn for cumulants, Fn for
factorial moments, and Cn for factorial cumulants. For the
acceptance and efficiency affected experimentally observed
quantities, we use the corresponding lowercase letters, mn,
fn, and kn. Note also that deviations of a distribution from
normality are usually characterized by nonzero values of the
dimensionless quantities named skewness, γ1 = K3/K3/2

2 , and
excess kurtosis, γ2 = K4/K2

2 . Yet other quantities referred to
later in the text will be defined as needed.

The various moments and cumulants characterize a distri-
bution in equivalent ways and a particular choice may just
result from convenience of use in a given situation. Let us
recall that moments Mn and factorial moments Fn transform
into each other via the following relationships [57,58]:

Mn =
n∑

l=1

s2(n, l )Fl ,

Fn =
n∑

l=1

s1(n, l )Ml , (2)

where s1(n, l ) and s2(n, l ) are the Stirling numbers of first
and second kinds, respectively. Note that these relationships
also hold between cumulants Kn and factorial cumulants Cn.
Cumulants and moments, that is, Kn and Mn or Cn and Fn, can
be related via recursion [59,60]:

Kn = Mn −
n−1∑
l=1

(
n − 1

l − 1

)
Kl Mn−l ,

Cn = Fn −
n−1∑
l=1

(
n − 1

l − 1

)
Cl Fn−l , (3)

with the (n − 1
l − 1) being binomial coefficients.

III. EFFICIENCY CORRECTIONS

The measured proton number distributions were obtained
within the geometric acceptance of HADES, which is con-
strained in polar and azimuthal angles, as well as in a limited
momentum range only. Furthermore, the proton yields are
affected by inefficiencies of the detector itself and of the hit
finding, hit matching, track fitting, and particle identification
algorithms used in the reconstruction. Geometric acceptance
losses are minimized in our analysis by restricting the proton
phase space to the region indicated in Fig. 8. Note also that,
in the following, we do not explicitly distinguish between
losses due to finite acceptance and losses caused by hardware
or analysis inefficiencies; we subsume all effects into one
number which we just call detection efficiency εdet.

With the HADES setup fully implemented in the detector
modeling package GEANT3 [44] and with appropriate digitiz-
ing algorithms emulating the physical behavior of all detector
components, we have performed realistic simulations of its
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FIG. 10. Simulated proton detection efficiency εdet in one sector
of HADES as a function of rapidity y and transverse momentum pt ,
and for two impact parameter ranges (left, b = 8–10 fm and right,
b = 0–2 fm).

response to Au + Au collisions. In particular, using IQMD6

generated events, these simulations allowed us to systemat-
ically investigate the proton detection efficiency throughout
the covered phase space. Figure 10 displays the calculated ef-
ficiency εdet as a function of rapidity y and transverse momen-
tum pt for two centralities corresponding to narrow ranges of
the collision impact parameter b. It appears clearly from these
plots that the detection efficiency in HADES depends not only
on phase-space bin (more strongly on y than on pt ) but also
on the event centrality: Overall, the efficiency is considerably
reduced in central events with respect to the more peripheral
ones. This reduction can be connected to an increase of the
hit and track densities in the detector with increasing particle
multiplicity. In other words, larger occupancy in the detector
lead to some deterioration of the reconstruction procedures.
As both detection and reconstruction in HADES operate on
one sector at a time, it is sufficient to investigate the efficiency
on a per-sector basis. We illustrate this in Fig. 11 by plotting

6In this paper, a reference to IQMD always implies that a MST
algorithm was used to add nuclear clusters to the event.
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three out of the 40 narrow phase-space bins used in our analysis.
Efficiency points correspond to 2-fm-wide impact-parameter slices
centered at b = 9, 7, 5, 3, and 1 fm, respectively; curves are the
polynomials adjusted to model the occupancy dependence of the
efficiency.

for a few narrow phase-space bins the simulated detection
efficiency εdet in one HADES sector as a function of the
number of particle tracks Ns

trk reconstructed in this sector,
obtained by selecting events within a sequence of narrow b
bins. Low-order polynomials have been fitted to the efficiency,
as also shown in the figure. Such fits were done in all sectors
and for 40 phase-space bins, using tenfold segmentation in y
and fourfold in pt . In fact, in most cases, a linear function
turned out to be sufficient to model the observed behavior of
ε = ε(Ns

trk). Next, we discuss how these modeled efficiencies
can be used to correct the measured proton number moments
and cumulants.

Efficiency corrections of particle number cumulants have
been extensively discussed in the literature [53,55,61–63].
They usually rely on the premise of a binomial efficiency
model, that is, on the assumption that the detection processes
of many particles in a detector are independent of each other.
This implies that each particle has the same probability of
being detected, irrespective of the actual number of particles
hitting the detector in a given event. In such a case, the result-
ing multiplicity distribution of detected particles is a binomial
distribution. A convenient property of the binomial efficiency
model is that it leads to a particularly simple relationship7

for any order n between the factorial moments fn of the
distribution of detected particles and the factorial moments Fn

7This has also been extended to net particle numbers N − N̄ ,
where N and N̄ refer to the particles and antiparticles, respectively.
However, at our beam energy we have to deal with protons only.

of the true particle distribution [55,62,64,65]:

fn = εnFn , (4)

where ε is the detection efficiency of a particle.
If ε is known, the true Fn can be calculated easily from the

measured fn, and all other true moments and cumulants can be
obtained with the help of Eqs. (2) and (3). We have to handle,
however, two more problems: First, as the efficiency depends
on phase-space bin (see Fig. 10), we have to do efficiency
corrections bin by bin and merge the corrected values into one
global result. Second, we also have to take into account that
the efficiencies depend on the number of particles actually
hitting the detector (see Fig. 11) and therefore change from
event to event. However, ways to pass both hurdles have been
found and are discussed next.

The need to handle more than one efficiency value, ε,
depending, e.g., on particle species or on the y − pt bin, had
been recognized before and is discussed in Refs. [53,61,62].
In particular, in Ref. [61] so-called local factorial moments
were introduced, i.e., factorial moments of particles in a given
phase-space bin and obeying Eq. (4) individually, so that
efficiency corrections can be done bin-wise. In addition, based
on a multinomial expansion of the full factorial moments
Fn in terms of the corrected local moments, a prescription
of how to sum over all phase-space bins was presented.
Although formally correct, the procedure is rather awkward
to implement, and it quickly turns prohibitively memory and
CPU time intensive if applied to big event samples and/or a
large number Nb of phase-space bins.

A much more efficient scheme based on factorial cumu-
lants has been proposed in Refs. [62,63,66]. It omits the full
multinomial expansion in terms of local factorial cumulants
(or factorial moments), leading to a vast reduction in mem-
ory needs and computing time.8 We have implemented this
scheme in our analysis, using factorial moments, however, and
applied it directly to the efficiency correction of the proton
moments. In doing so, we have partitioned the phase space
covered by HADES (see Fig. 8) into 240 bins in total, namely
6 sectors × 10 rapidity bins × 4 pt bins.

We have investigated two ways to overcome the second
complication, that is, the dependence of the efficiency on
the number of tracks: either by introducing an event-by-
event recalculation of the efficiency correction or by using
an unfolding procedure to directly retrieve the true particle
distribution from the measured one.

A. Occupancy-dependent efficiency correction

The dependence of the detection and reconstruction effi-
ciencies on track number leads evidently to an event-by-event
change of εdet. On condition that the binomial efficiency
model remains valid or at least a good approximation, one
can consider grouping the events into classes of identical

8E.g., the number of terms to be evaluated and stored at fourth
order for Nb bins decreases from [(Nb + 3)(Nb + 2)(Nb + 1)Nb]/24
to a mere 13 terms, independent of Nb [63].
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efficiency and apply the efficiency correction of Eq. (4) in-
dividually to each one of these classes. As has indeed been
shown in Ref. [65], the efficiency-corrected factorial moments
Fn of a superposition of particle distributions, stemming,
e.g., from different event classes, can be obtained from the
weighted means of the observed class factorial moments f (i)

n
as

Fn =
k∑

i=0

ai
f (i)
n

εn
i

, (5)

where εi are the individual class efficiencies, ai are the class
weights normalized such that

∑
ai = 1, and the index i runs

over all classes. Note that this is a generalization of Eq. (4)
and it is also applicable to factorial cumulants, but not to
moments and cumulants in general [65]. In particular, when
the efficiency changes from event to event, each event of
the sample analyzed can be considered as a class of its own
and the relation still remains valid. This provides therefore
a convenient way to apply efficiency corrections within the
event analysis loop by, first, recalculating the efficiencies on
the fly for all phase-space bins of interest as a function of
the number of reconstructed tracks per sector as discussed in
Sec. III and, second, computing the average factorial moments
(using, e.g., Eq. (17) of Ref. [61]) or factorial cumulants
(using, e.g., Eq. (61) of Ref. [63]). We have investigated
this procedure in GEANT3 detector simulations using Au +
Au events calculated with the IQMD transport model and
we found good agreement of the corrected and true proton
moments. This also supports the underlying assumption of
eventwise binomial efficiencies in the HADES detector.

Note for completeness that nonbinomial efficiencies based
on the hypergeometric or β-binomial distributions have been
discussed in Ref. [67]. Although the properties of these some-
what ad hoc models are well known, they lack an obvious
connection to physical phenomena playing a role in the actual
detection process. In Appendix A, we propose yet another
model, known as the urn occupancy model [68], that in fact
possesses such an intuitive connection. It is, however, specif-
ically tailored for detectors with a well-defined hardware
segmentation like tiled hodoscopes, pixel telescopes, modular
calorimeters, etc. The HADES setup, as a whole, does not
fall into either category but we can still define for it a virtual
subdivision and treat the number of virtual segments Nseg as
a free parameter that, together with the single-hit efficiency
ε0, can be adjusted to simulated proton distributions. Further
below, we show and discuss the result of such a fit.

B. Response matrix and unfolding

Figure 12 shows simulated distributions of the number of
detected protons Ndet in HADES as a function of the number
Nin of protons emitted into the phase space of interest for
IQMD events with 0–10% (30–40%) centrality. These two-
dimensional histograms represent the response of the detector
for proton production in Au + Au collisions at a given cen-
trality. Their shape is not only determined by the multiproton
detection and reconstruction efficiency, but also by the shape
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FIG. 12. Proton response matrices of the HADES detector sim-
ulated with IQMD clustering for two centrality selections, semipe-
ripheral (30–40%) and central (0–10%). These matrices encode the
distribution of the number Ndet of reconstructed proton tracks—
within the phase-space bin of interest (here y ∈ y0 ± 0.5)—for any
given number Nin of protons emitted into this bin.

of the true proton multiplicity distribution presented as input.9

These response matrices have been obtained from the same
simulation used to extract the efficiency per phase-space bin
and centrality bin, discussed in the occupancy-dependent cor-
rection scheme, which basically assumes binomial efficien-
cies. On the other hand, any deviation from the binomial effi-
ciency model would also be encoded in this response matrix. It
is therefore appropriate to investigate whether unfolding of the
measured proton distributions with the help of such response
matrices is a useful approach to efficiency correction. In the
context of particle-number-fluctuation analyses, a proof-of-
principle simulation study of Bayesian unfolding has indeed
been presented in Ref. [69]. On our side, we have investigated
this approach by making use of those unfolding procedures
implemented in the object-oriented ROOT analysis frame-
work [70]. It is well known that unfolding by straightfor-
ward inversion of the detector response matrix is mostly not
successful, in particular if the matrix is generated by Monte
Carlo and is hence affected by limited event statistics. The
simulated proton response matrices shown in Fig. 12 clearly
display the inevitable signs of resulting inaccuracies. Such
a matrix is generally ill conditioned and its quasisingularity
leads to unstable or even plainly unphysical results. Various
techniques to solve ill-behaved equation sets have been pro-
posed and are widely discussed in the literature: for example,
Bayesian unfolding [71], singular value decomposition (SVD)
[72], matrix regularization schemes [73], and Wiener filtering
[74].

In our simulation study, we have investigated Tikhonov-
Miller regularization and, for comparison, also unfolding with
SVD. In both cases, the aim is to solve an overdetermined
system of equations A · x = y with a robust least-squares pro-
cedure, where A is the response matrix, x is the unknown input
vector, and y is the measured output vector. In our context,
x corresponds to the true particle number distribution and y

9Note that the finite momentum resolution of the detector also leads
to small cross-boundary effects, visible, e.g., in Fig. 12 for peripheral
collisions: Ndet > 0 although Nin = 0.
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to the actually measured distribution. In an overdetermined
system, the dimension of y is larger than the dimension of
x and the solution will only be approximate. Solving such a
system in a least-squares sense is then equivalent to finding
the minimum of the functional χ2 = |A · x − y|2. To achieve a
more robust solution, a Tikhonov regularization term [73] can
be added to this functional: χ2 = |A · x − y|2 + λx · H · x,
where λ is a Lagrange multiplier controlling the strength
of the regularization and H is a square matrix built from
first-order or higher order finite differences of x. The basic
idea of Tikhonov is that the additional quadratic term serves
as a constraint that dampens instabilities in the solution x. A
typical choice for H is to use second-order finite differences
in x which favors minimum overall curvature of the vector x
and suppresses higher order oscillations. The optimal regular-
ization strength is usually found by a λ scan and the ROOT
implementation10 provides two different methods to do so:
the L-curve scan and the minimization of global correlation
coefficients.

We have furthermore explored an unfolding method based
on singular value decomposition [72], made available as well
in ROOT.11 The starting point of SVD unfolding is to write
the response matrix A as a product A = U · S · VT, where U
and V are orthonormal matrices, and S is a diagonal matrix
the elements si of which are the singular values of matrix
A. All si � 0 and, no matter how ill conditioned A is, this
decomposition can always be done. For one, SVD gives us
a clear diagnosis of the degree of singularity of the response
matrix and, arranging the singular values in decreasing order,
it allows us to cure instabilities by truncation, that is by
removing all terms with si smaller than a given threshold value
sthr. The solution x of the least-squares problem can be written
as a linear combination of columns of matrix V

x =
∑

i

(
U(i) · y

si

)
V(i) ,

with the summation going over all i for which si � sthr.
The threshold value sthr can be determined using statistical
significance arguments (details are given in Ref. [72]). Note
that SVD can also be combined with a regularization, enforc-
ing, e.g., positiveness of the solution or minimum curvature.
Further below we show how well these unfolding methods
fare in our simulations.

C. Moment expansion method

For completeness, we would like to mention yet another
approach to the efficiency correction of distribution moments,
namely the recently proposed method of moment expansion
based on the detector response matrix [75]. Arguing that
in most cases the true particle number distributions are not
really needed but typically only their cumulants, the authors
of Ref. [75] proposed to bypass the unfolding altogether and
instead establish a direct formal relation between the mea-
sured moments mn (or cumulants kn) and the true moments

10ROOT class TUnfold.
11Implemented in ROOT class TSVDUnfold.

Mn (or cumulants Kn). Indeed, the relevant information to do
so is encoded in the response matrix A, more specifically in
its column-wise moments which can be used to expand the ob-
served mn in terms of the true Mn. Depending on the efficiency
model used (e.g., binomial, hypergeometric, β-binomial), this
expansion is closed and, by solving the resulting system of
equations m = A · M, the Mn are expressed in terms of the
mn. Note that the moment matrix A has a much lower dimen-
sion than the response matrix A itself, typically 52–102 versus
502–1002, which greatly eases its inversion. For efficiency
models that do not lead to a closed form, for example, models
where the efficiency depends in a nontrivial way on particle
multiplicity, the expansion must be truncated at some order
nmax to be amenable to a solution. In that case, one must study
the inversion as a function of nmax to control the stability
of the result obtained. The effect of the truncation on the
moments retrieved with the expansion method is exemplified
in Fig. 13 for the first four moments of a simulated proton
distribution. The solution stabilizes on a plateau at nmax � 10,
meaning that the expansion can be safely truncated at this
value of n. However, note that in this analysis based on the
simulated proton response matrix (the one used also in the
unfolding investigations) numerical instabilities start to set in
for nmax > 20.

Unfolding and expansion methods use as input a response
matrix typically produced by Monte Carlo with the help of
a given event generator. However, as often pointed out (see,
e.g., Refs. [75,76]), sufficiently large statistics and a proper
choice of the simulation input are of importance. The input
model can have an influence on the resulting response and it is
therefore mandatory to carefully check its validity, not only in
the region of phase space covered by the detector acceptance,
but also beyond because of the inherent migration of yield
from the latter to the former.

D. Validation with IQMD transport events

In an extensive Monte Carlo investigation, we have val-
idated and compared the various presented efficiency cor-
rection schemes. As stated above, we have implemented the
full HADES setup in GEANT3 and have run high-statistics
simulations with as input 108 IQMD + MST clusterized Au
+ Au events in the impact parameter range b = 0–10 fm.
This range covered roughly the centralities accepted by the
PT3 trigger,12 namely the 0–43% most central events (see
Ref. [38] for details). With reconstructed and identified proton
tracks, we histogrammed the multiplicity of detected pro-
tons for various centrality and phase-space bins. Applying
efficiency corrections to these distributions, we obtained the
corresponding corrected proton multiplicity distributions as
well as their corrected moments. Finally, making use of the
event generator information, we also have the truth, i.e., the a
priori proton distributions. Results obtained with the different
correction procedures are compared in Fig. 14, which displays

12Already in the model calculation, a given impact parameter leads
to a distribution of participant nucleons and further smearing in the
actual centrality observable.
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FIG. 13. Moment expansion technique applied to proton distributions from IQMD events (0–10% most central, y ∈ y0 ± 0.2). Shown is the
dependence of the corrected moments on the truncation order nmax of the moment matrix A. The plateau region (nmax � 10), corresponding to
stable behavior, is close to the true IQMD values, namely 〈Np〉 = 22.5 (a), σ = 6.15 (b), skewness ≡ γ1 = 0.14 (c), and kurtosis ≡ γ2 = −0.16
(d), indicated by red dashed lines.

the respective efficiency-corrected mean, width (σ ), skewness
(γ1), and kurtosis (γ2) for protons emitted into the y ∈ y0 ±
0.2 and 0.4 � pt � 1.6 GeV/c phase space, as a function
of the mean number of participant nucleons 〈Npart〉.13 Shown
are the true IQMD moments (dashed lines) and results from
various correction schemes: constant efficiency, occupancy-
dependent efficiency, unfolding, moment expansion, and, for
comparison, also the “occupancy” model (see Appendix A)
directly adjusted to the IQMD truth. It is clearly visible that
by using a constant efficiency (green full circles), i.e., an
efficiency independent of track density, the correct moments
are not retrieved. The occupancy model (pink triangles), while
giving at least a fair description for the most peripheral
centralities, is overall not satisfying. On the other hand, the
three correction methods discussed in detail above—either

13Npart is defined as the number of nucleons in the overlap volume
of the two colliding nuclei.

applying an event-by-event correction or unfolding14 the mea-
sured proton distribution or using a moment expansion—all
succeed in producing a result that agrees with the truth within
given error bars. Besides the statistical errors due to the finite
event samples simulated, also systematic uncertainties occur
caused, for example, by different choices of the fit function
used to model the effect of occupancy on the efficiency or
of the optimal regularization applied in the unfolding; these
systematic errors are indicated in Fig. 14 as shaded bands
(±1% for the mean, ±2% for the width, ±0.02 for γ1, and
±0.03 for γ2). Figure 15 shows the same investigation done
for protons emitted into a larger phase-space bin, namely y ∈
y0 ± 0.5. Again, the agreement with IQMD truth of the three
favored methods is very satisfactory. The constant efficiency
correction and the occupancy model fail, however, and are
therefore omitted from the figure. From these simulation stud-
ies, we conclude that small point-to-point deviations between

14SVD and Tikhonov regularized unfolding give comparable results
within statistical errors.
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FIG. 14. Comparison of various efficiency correction methods applied to a simulation using IQMD events and selecting protons within
y ∈ y0 ± 0.2. Plotted are the corrected proton number mean (a), width (b), skewness (c), and kurtosis (d) as a function of 〈Npart〉. Error bars
are statistical and colored shaded bands correspond to systematic errors of the correction technique: blue for the binomial event-by-event
correction, and ocher for unfolding, respectively. The IQMD truth is shown as black dashed lines.

methods do exist but no evident systematic trend is apparent
and no clear preference for either of the three correction
schemes emerges. However, applying the efficiency correc-
tions to our Au + Au data, the occupancy-dependent scheme
turned out to become our favorite: This was motivated, first,
by its ease of implementation within the event analysis loop
and, second, by the fact that both unfolding and moment
expansion are more sensitive to the particular choice of event
generator used to produce the response matrices. In the end,
we treated differences between the correction methods as a
contribution to our total systematic error (see Sec. VI).

IV. VOLUME CORRECTIONS

In heavy-ion collision experiments, the centrality determi-
nation can be based on various observable quantities, like
the number of hits or tracks in the detector, the total energy
measured or the ratio of transverse to longitudinal energies, or
the sum of charges at forward angles. The only requirement
for any such observable to serve as proxy for centrality is that

it be a monotonic function of the impact parameter b, which
itself is not directly measurable. In addition, as observed quan-
tities are obtained with finite resolution only, any cut meant to
restrict centrality to a particular value can do so only with a
limited selectivity. This means that in all cases a finite range of
impact parameters will be selected, resulting in a distribution
of the reaction volume and of the corresponding number of
participant nucleons Npart. As particle yields typically scale
with some power of Npart, their number distributions will be
affected as well and will therefore depend on the volume
(or Npart) fluctuations of a given centrality cut. This effect
has been recognized and discussed in Ref. [42], where also
centrality bin width corrections (CBWC) have been proposed
as a possible remedy. The idea of CBWC is to compute yield-
weighted averages of distribution moments over a number of
narrow subdivisions of the given wider centrality selection.
This way the larger statistics of a wide selection could be
benefited while palliating the noxious effects of its increased
volume fluctuations. This procedure is indeed useful, but only
when the centrality resolution of the observable is narrower
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FIG. 15. Same as Fig. 14 but for protons within a rapidity bin of y ∈ y0 ± 0.5. Note that only the most promising techniques are shown
here (see text).

than the width of the selection cut. At low beam energies,
where the hit and particle multiplicities tend to be small, the
achievable centrality resolution is often quite limited such that
the CBWC method fails.

A more formal study of the effect of volume fluctuations
on the particle number cumulants has been done in Ref. [77]
and, more recently, in Ref. [78] where also a simulation
study of the situation at the ALICE and STAR experiments
is presented. In both publications, the authors start from the
assumption that particle production scales with the reaction
volume V [77], that is, the number of wounded nucleons
Nw [78], such that all particle number cumulants Kn are
proportional to V (or Nw); this behavior corresponds to in-
dependent particle production. Introducing reduced particle
number cumulants κn = Kn/V and characterizing the volume
fluctuations by volume cumulants Vl , they arrived at a general
expression for the volume-affected reduced cumulants

κ̃n =
n∑

l=1

vl Bn,l (κ1, κ2, ..., κn−l+1) , (6)

where vl = Vl/V are reduced volume cumulants15 and Bn,l are
Bell polynomials [79]. Then, if all volume cumulants up to
order n are known, the κn can be retrieved from the κ̃n by
solving the system of Eqs. (6) recursively. Up to fourth order,
this gives

κ1 = κ̃1 ,

κ2 = κ̃2 − κ2
1 v2 ,

κ3 = κ̃3 − 3κ1κ2v2 − κ3
1 v3 ,

κ4 = κ̃4 − (
4κ1κ3 + 3κ2

2

)
v2 − 6κ2

1 κ2v3 − κ4
1 v4 . (7)

With these equations, the observed cumulants can be cor-
rected for the volume contributions resulting from the spread
of the applied centrality selection. The corresponding volume
distribution must be known, of course, either from a model
calculation or, with the help of a procedure to be defined,
from the data itself. As proposed in Ref. [78], for a more
practical measure of volume one could use the number of
wounded nucleons Nw or, at low bombarding energy, rather

15With V1 = V and v1 = 1.
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FIG. 16. Reduced proton cumulants κn as a function of Npart in four different transport calculations done with the IQMD, UrQMD, and
HSD models respectively. The phase space chosen here was y ∈ y0 ± 0.2 (or y ∈ y0 ± 0.5) and 0.4 � pt � 1.6 GeV/c for IQMD, respectively
y ∈ y0 ± 0.2 and 0.4 � pt � 1.6 GeV/c for UrQMD and HSD. Dashed lines are linear fits of function κ (Npart ) = κ0 + κ ′ Npart to some of the
presented reduced cumulants.

the number of participating nucleons Npart. The open question,
however, is to what extent the assumed scaling with volume
of the cumulants, which is at the basis of Eq (6), can be
considered valid. The authors of Ref. [77] argued that, while
this is indeed a reasonable approximation in ultrarelativistic
heavy-ion collisions probing the low-μB, high-T region of
the phase diagram, caution should be applied in the high-μB

regime relevant for CEP searches. To find some guidance, we
have investigated the respective behavior of transport codes,
namely IQMD, UrQMD, and also HSD (version 711n) [80]
run for the

√
sNN = 2.4 GeV Au + Au reaction; i.e., we have

analyzed their true proton number cumulants as a function
of Npart within various phase-space bins. Figure 16 shows
examples of such calculations together with fits of the linear
function κ (Npart ) = κ0 + κ ′ Npart to some of the simulation
points.16 It is obvious from these plots that all three transport
models strongly violate the assumption of constancy of κn

16The Npart bin width used in these calculations (10 for IQMD and
UrQMD, 20 for HSD) was fine enough to keep volume-fluctuation
effects small.

versus Npart by revealing a linear and, in some cases (e.g.,
for HSD), even a quadratic dependence on Npart. A systematic
study also reveals a high degree of variability with respect to
the particular bin chosen in y − pt phase space. The models
differ, however, in the details of their rendering of the complex
dependency of κn on centrality.

Evidently, the assumption of constancy of κn has to be
abandoned and at least a linear term or, better, linear plus
quadratic terms have to be taken into account when calculat-
ing the contributions of volume fluctuations. Along the lines
presented in Ref. [77], we have extended the derivation of
Eq. (6) by replacing the constant ansatz κn(V ) = κn with a
second-order Taylor expansion of κn(V ) around the mean 〈V 〉
of the volume distribution

κn(V ) = κn + κ ′
n(V − 〈V 〉) + κ ′′

n (V − 〈V 〉)2 , (8)

where the κn are the leading constant terms, κ ′
n are slopes, and

κ ′′
n are curvatures, all of which can depend on rapidity and

transverse momentum. With this ansatz, a more complete set
of volume terms contributing to the reduced cumulants κ̃n has
been derived. Using slopes only (i.e., κ ′′

n = 0), the following
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TABLE II. Number of volume-fluctuation terms contributing
to the observed reduced cumulants κ̃n. Column L (leading terms)
corresponds to Eq. (6), L + NL (including slopes of the Npart

dependence) corresponds to Eq. (9), and L + NL + N2L (with slopes
and curvatures) corresponds to Eq. (10).

κ̃ L L + NL L + NL + N2L

κ̃1 0 1 3
κ̃2 1 8 26
κ̃3 2 28 128
κ̃4 4 84 527

relations were found for n = 1, 2, 3, and 4:

κ̃1 = κ1 + v2κ
′
1 ,

κ̃2 = κ2 + κ2
1 v2 + κ ′

2v2 + 2κ1κ
′
1V2 + 2κ1κ

′
1v3

+ 2κ ′2
1 v2V2 + κ ′2

1 V1V2 + 2κ ′2
1 V3 + κ ′2

1 v4 ,

κ̃3 = κ3 + κ3
1 v3 + 3κ1κ2v2 + 3(κ1κ

′
2 + κ ′

1κ2)v3

+ 6κ ′
1

(
κ2

1 + κ ′
2

)
v2V2 + 3κ ′

1

(
κ2

1 + 2κ ′
2

)
V3

+ 3κ ′
1

(
κ2

1 + κ ′
2

)
v4 + 12κ1κ

′2
1 V 2

2 + 3κ1κ
′2
1 V1V3

+ 24κ1κ
′2
1 v2V3 + 6κ1κ

′2
1 V4 + 3κ1κ

′2
1 v5 + κ ′

3v2

+ 3(κ1κ
′
2 + κ ′

1κ2)V2 + 8κ ′3
1 v2V

2
2 + 6κ ′3

1 V1V
2

2

+ 10κ ′3
1 v3V3 + κ ′3

1 V 2
1 V3 + 24V2V3κ

′3
1 + 3κ ′3

1 V1V4

+ 12κ ′3
1 v2V4 + 3κ ′3

1 V5 + κ ′3
1 v6 + 3κ ′

1κ
′
2V1V2 ,

κ̃4 = κ4 + κ4
1 v4 + 6κ2

1 κ2v3 + (
4κ1κ3 + 3κ2

2

)
v2 . . . . (9)

Because of its length, the cumulant of order n = 4 is
fully listed in Appendix B, Eq. (B4). Compared to Eq. (6),
many additional terms that all depend on the slopes appear,
including terms involving volume cumulants up to order 2n,
that is, for κ̃4 up to order 8. In a somewhat colloquial manner,
we designate the slope-related corrections by NLO, i.e., next
to leading order, and the curvature affected terms (see below)
by N2LO, i.e., next to next to leading order. For the higher
orders, the number of terms quickly rises and the formulas
become cumbersome to derive by hand; we have instead
used a symbolic computation program17 to generate them as
well as the corresponding C code needed for their numerical
evaluation. Evidently, the relations derived with all slopes and
curvatures included are even lengthier (see Table II) and they
require volume cumulants up to order 3n. The C code can be
provided on request and, for illustration only, we list here the
first two N2LO cumulants:

κ̃1 = κ1 + v2κ
′
1 + (V2 + v3)κ ′′

1 ,

κ̃2 = κ2 + κ2
1 v2 + κ ′

2v2 + 2κ1κ
′
1V2 + 2κ1κ

′
1v3

+ 2κ ′2
1 v2V2 + κ ′2

1 V1V2 + 2κ ′2
1 V3 + κ ′2

1 v4

+ 6κ1κ
′′
1 v2V2 + 2κ1κ

′′
1 (V3 + v4) + κ ′′

2 (V2 + v3)

+ 10κ ′
1κ

′′
1 V 2

2 + 18κ ′
1κ

′′
1 v3V2 + 2κ ′

1κ
′′
1 V1V3

17Wolfram MATHEMATICA.

+ 4κ ′
1κ

′′
1 V4 + 2κ ′

1κ
′′
1 v5 + 15κ ′′2

1 v2V
2

2

+ 2κ ′′2
1 V1V

2
2 + 18κ ′′2

1 V2V3 + 15κ ′′2
1 v4V2

+ 9κ ′′2
1 v3V3 + κ ′′2

1 V1V4 + 2κ ′′2
1 V5 + κ ′′2

1 v6 . (10)

Despite the large number of contributing terms, one has
to keep in mind that these expressions are just polynomials
which can be easily evaluated for given values of κn, κ ′

n,
κ ′′

n , and vl , and they can be adjusted to simulated or real
data to extract the cumulants of interest. Doing such fits to
proton cumulants obtained with transport models, we find that
typically κn � κ ′

n � κ ′′
n and consequently most of the higher

order volume terms turn out to be very small. This is also
confirmed by fits of Eq. (10) to our data, as exemplified in
Fig. 17 which shows the rapid drop over nearly seven orders
of magnitude of the contributing volume terms with increasing
order of vl . We conclude that in practice it is sufficient to
consider terms with vl up to order l = 5 or 6 at most, i.e., the
full gamut of the vl up to l = 8 (NLO) or even l = 12 (N2LO)
will most likely never be required.

V. CENTRALITY SELECTION AND Npart DISTRIBUTIONS

In order to apply volume corrections to particle-number
cumulants measured within a given centrality selection, it is
mandatory to know the corresponding Npart distribution or at
least its cumulants up to sufficiently high order. In simula-
tions, the impact parameter b is known event by event and
the corresponding number of participants can be determined
from the geometric overlap or, better, with the help of a more
involved Glauber model. In the data, however, b and Npart are
not directly observable; we must find a proxy for Npart, e.g., the
number of observed hits Nhit or of reconstructed tracks Ntrk,
to quantify the volume effects. The very strong and nearly
linear correlation between Nhit and the underlying Npart is
illustrated in Fig. 18 which shows a simulation done with the
IQMD transport model. Hence, a first approach to arrive at the
volume cumulants Vl , required by Eqs. (6), (9), and (10), could
be to just use the cumulants of the observed Nhit distribution.
Yet, the two quantities do not trivially relate to each other:
First, particle production per participant nucleon is a random
process; and second, finite detector acceptance and efficiency
make the observation process random too. Consequently, any
given Npart results in a spread of the observed number of
hits, where the relation Nhit(Npart ) can be approximated by a
negative binomial distribution [38]. Because of this spread,
simply using Nhit as a direct proxy for Npart will lead to an
overestimation of V2 and will generally result in wrong higher
order cumulants. Of course, the same arguments also speak
against using Ntrk as proxy for Npart.

There is in fact yet another, more subtle effect that needs to
be taken into account in the determination of the Vl , namely
the correlations between Nprot and the centrality measure used,
Nhit, Ntrk, or �QFW. A recent simulation study [81] done with√

sNN = 200 GeV UrQMD events concluded that the corre-
lations between the proton number and the centrality defining
multiplicities do affect the volume-fluctuation correction. A
qualitative argument for this phenomenon is the following: A
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FIG. 17. Illustration of the magnitude of NLO + N2LO volume-fluctuation terms contributing to the observed reduced proton number
cumulants κ̃n with n = 1, 2, 3, and 4. The magnitude of the terms decreases quickly with increasing order of vi; low-order diagonal terms are
dominant and off-diagonal terms, depending on a product vi · v j , fall off even faster. The corrections shown were determined for a selection of
the 0–10% most central Au + Au collisions measured in HADES (see Sec. V below).

centrality selection realized by applying cuts on the number
of observed hits, Nmin � Nhit � Nmax, constrains not only the
mean number of hits 〈Nhit〉 but, because Nhit and Nprot are
strongly correlated, also the corresponding mean number of
protons. This cut will therefore tend to curtail large excursions
of Nprot from its mean value 〈Nprot〉, leading to a reduction of
its variance and generally affecting the higher order proton
number cumulants in a nontrivial way. At the low bombarding
energies where HADES operates, protons are the dominant
particle species and they contribute most of the hits and tracks,
causing correlations to be particularly pronounced. This ap-
pears also from the transport model simulations (IQMD and
UrQMD) displayed in Fig. 19, where the linear correlation
coefficients ρ between Nprot and, respectively, Nhit, Ntrk, and
�QFW are plotted against impact parameter b. Both models
show strong positive correlations for Nhit and Ntrk, and neg-
ative, but much weaker correlations for �QFW. Ideally, one
would want to incorporate correlations between the proton
number and the centrality-defining observable into a more
comprehensive volume-fluctuation formalism expressed, if

possible, as a function of the experimentally accessible rel-
evant correlation coefficient ρ(Nprot, Nhit ), ρ(Nprot, Ntrk), or
ρ(Nprot, �QFW). Unfortunately, such a complete model is not
yet at hand, and we have hence taken the pragmatic approach
to (1) use the centrality selector with lowest correlations and
(2) modify the volume cumulants based on the resulting Nhit

distributions such as to express the correlation-affected Npart

distributions.
In the Au + Au data presented here, the observed correla-

tion coefficient ρ(Nprot, �QFW) was found to be negative as in
the transport simulations but of somewhat larger magnitude,
0.15–0.25. However, these values also include a part caused
by the global volume fluctuations within the finite experimen-
tal centrality bins and the intrinsic correlations of the two
observables might in fact be weaker. All matters considered,
the observable �QFW displays the smallest correlations with
Nprot and we have hence used it as centrality selector for the
proton-fluctuation analysis. We developed an ad hoc scheme
to handle in one swipe both the blurring of the Npart →
Nhit mapping and the correlation-induced modifications of
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FIG. 18. Correlation between the total number of hits Nhit in the
HADES time-of-flight detectors and the number of participants Npart

in 1.23A GeV Au + Au events simulated with the IQMD transport
code for impact parameters in the range of 0–10 fm.

the volume cumulants vl . The core idea is to introduce at
every order (l = 2, 3, . . . , lmax) a pair of modifiers, fl and dl ,
and substitute vl in the cumulant expressions, i.e., Eqs. (9)
and (10), with vmod

l = fl × vl + dl ; each volume cumulant is
eventually adjusted by applying an appropriate scaling factor
fl as well as a modifying cumulant dl . This transformation
yields modified volume cumulants once the fl and dl are
properly fixed. For our analysis, we have determined these
parameters in a multiorder fit of Eq. (10) to the reconstructed
proton cumulants κ̃n of a high-statistics sample of IQMD
events run through the HADES detector simulation and anal-
ysis pipeline, i.e., in a situation where the true κn, as well as
their slopes κ ′

n and curvatures κ ′′
n were all fully known. In this

procedure, the reduced volume cumulants vl were taken from
the Nhit distribution, with its abscissas rescaled by the factor
〈Npart〉/〈Nhit〉, and using Npart as a proxy for the source volume,
i.e., V ≡ Npart. Note that the Nhit − Nprot correlations do not
preclude us from using the scaled Nhit distribution as a proxy
for the volume distribution because, in the determination of
the vl , only event-averaged quantities enter.

With the adjusted set of parameters fl and dl , the modified
volume cumulants can be obtained and used to generate
an approximation (up to some order lmax) of the effective,
i.e., correlation-affected Npart distributions (see Appendix C
for details). Figure 20 illustrates the procedure with simu-
lated IQMD Npart distributions corresponding to four different
centrality bins selected with cuts on the �QFW observable.
The true distributions from the model (red histograms) are
compared with a reconstruction (dot-dashed curves) based on
their first four reduced volume cumulants vl (l = 1, 2, 3, 4)
and plotted as four-parameter β distributions; likewise, the ap-
proximation based on the modified reduced volume cumulants
vmod

l is plotted (solid curves). Although all volume cumulants
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FIG. 19. Transport simulations of Au + Au events with the
IQMD (a) and UrQMD (b) models showing correlations between
the number of identified protons Nprot and the centrality defining
observable Ncen = Nhit, Ntrk, and �QFW, respectively. Pearson’s linear
correlation coefficient ρ(Nprot, Ncen) is displayed for two rapidity
ranges, y ∈ yo ± 0.2 (dark blue) and y ∈ yo ± 0.5 (red), as a function
of the impact parameter b.

up to sixth order were included in the parameter fit, the
reconstructed Npart is plotted as a four-parameter distribution.
This approximation—used here for display only—evidently
misses some of the more wobbly features of the true dis-
tribution, which are best visible in the 0–10% and 10–20%
centrality bins. Most notable, however, are the changes caused
by correlations, leading to a consistent reduction in width of
the effective Npart distributions as compared to the model truth.

In the data, the true event-by-event number of participating
nucleons is not known; however, as explained above, we
can reconstruct the event-averaged Npart distribution from its
cumulants by using a volume-cumulant transformation of
the observed Nhit distribution. This transformation is done
by applying the modifiers f sim

l and d sim
l , determined previ-

ously in a simulation, to the cumulants vl of the rescaled
Nhit distribution, namely vmod

l = f sim
l × vl + d sim

l . To do the
Nhit → Npart scaling, the mean number of participants 〈Npart〉
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FIG. 20. Npart distributions of simulated IQMD events shown for
four centrality selections based on the �QFW signal in the FWALL.
IQMD truth (red histograms) is compared to reconstructions based
on their first four volume cumulants, displayed as four-parameter β

functions, without correlation effects (dot-dashed curves) and with
correlations (solid curves). The sum curves correspond to the 0–36%
most central events.

underlying the mean number of hits 〈Nhit〉 in a given cen-
trality bin was taken from a Glauber fit to the experimental
hit distribution [38]. As discussed above, with the modified
reduced cumulants vmod

l , the effective Npart distribution can be
reconstructed up to a given order. The result of this procedure
is displayed in Fig. 21 for eight 5% centrality selections based
on the �QFW observable; the measured Nhit distributions are
shown in Fig. 21(a) and the corresponding reconstructed Npart

distributions in Fig. 21(b), where the latter plotted as four-
parameter β functions based on either the vmod

l (solid curves)
or, for comparison, the plain vl (dot-dashed curves). Note
again that, in all centrality selections, using modified cumu-
lants leads to a substantial narrowing of the reconstructed Npart

distributions.
After having determined the reduced volume cumulants

vmod
l by scaling and transforming the measured Nhit distribu-

tions, we are finally in a position to fully remove volume-
fluctuation effects from the efficiency-corrected reduced pro-
ton number cumulants κ̃n. This is done in a combined mul-
tiorder fit of Eq. (10) to the set of measured κ̃n values,
thereby adjusting all κn, κ ′

n, and κ ′′
n at once while keeping

the vmod
l fixed to their simulated values. Errors arising from

the correction procedure are discussed in Sec. VI, while final
results obtained with the full analysis chain are presented in
Sec. VII.

VI. ERROR TREATMENT

A. Statistical errors

As discussed in the previous sections, fluctuation observ-
ables must be subjected to sophisticated analysis procedures
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FIG. 21. (a) Measured Au + Au Nhit distributions of eight 5%
centrality selections based on the �QFW signal. The latter is con-
strained by the 2D cut shown in Fig. 5, causing also the barely visible
“knee” in the 15–20% distribution. (b) Corresponding reconstructed
Npart distributions—plotted as four-parameter β functions—when
using the rescaled and modified volume cumulants vmod

l (solid curve)
or the just rescaled ones vl (dot-dashed curve). The sum curves
correspond to the 40% most central events.

like efficiency correction and volume effect removal. Unfortu-
nately, the explicit propagation of the corresponding statistical
errors throughout this complex reconstruction pipeline is awk-
ward at best [53] and, in our case, not practical at all. Instead,
we have used the resampling method known as the bootstrap
[57,82,83] as well as event subsampling [84] to determine
statistical error bars.

The main idea of the bootstrap method is to repeatedly re-
sample events with replacement from the total set of Nev mea-
sured events which, by definition, are considered independent
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and identically distributed (iid). For large Nev , this procedure
reuses on average a fraction 1 − e−1 � 0.632 of all events in
the set. Each of our 5% centrality selections comprises Nev ≈
20 million events and a huge number18 of nonidentical event
sets can be resampled; as our main goal is to get an error
estimate, a few hundred resamplings are considered sufficient
in practice [57]. Every one of the resampled event sets is
processed through the full analysis pipeline, allowing us to
construct the distribution of each observable of interest. The
histogrammed observables provide in turn estimates of their
respective mean and standard deviation, that is the statistical
error bar aimed for.

An alternative method to determine statistical errors is
provided by subsampling. In that approach, the full set of
observed events is divided into a number of equal-sized
subsets which are analyzed one by one, again producing
distributions of all observables with corresponding estimates
of mean and standard deviation. Subsampling is much faster
than resampling as it operates on smaller event sets with,
however, a correspondingly larger error. In order to use the
subsampling standard deviation as an estimator of the error
on an observable obtained from the full data set, it has
hence to be scaled by 1/

√
Nsub, where Nsub is the number of

subsamples [84]. Another important difference to resampling
is that subsampling can be sensitive to long-term changes in
the data properties, resulting, e.g., from instabilities of the
experimental conditions affecting the detector and/or beam
during the data taking. Indeed, if the subsamples correspond to
consecutive time periods, the resulting error bars will not only
represent fluctuations due to counting statistics but also incor-
porate a measure of mid- and long-term experimental changes.
It is then a matter of discussion how to label these additional
contributions: while random, mostly short-term instabilities
may be presented as part of the statistical fluctuations, long-
term drifts may be considered more akin to systematic errors.
In our case, we have corrected the measured proton yields for
long-term, i.e., day-by-day changes by rescaling the average
number of reconstructed tracks per event to a reference value.
Comparing next the standard deviations from subsampling,
based on a splitting into 2-h-long data-collection periods, with
the ones from resampling of the full set of events, we observe
an overall increase resulting in about a doubling of the error on
fourth-order moments and cumulants. As systematic effects
ultimately dominate the total error on our measurements (see
Sec. VII), we decided to accommodate the remaining short-
term random variations in our statistical errors by using the
subsampling standard deviations instead of the resampling
ones.

B. Systematic uncertainties

As already argued in Sec. II, various nuisance effects
can potentially influence the measured proton multiplicity
distribution. They result either from a contamination by other
event classes, namely pileup events or Au + C reactions, or

18In fact, (
2Nev − 1

Nev
), i.e., approximately an astounding 1012 000 000.

from background processes within valid Au + Au events, like
misidentified particles, decay protons, or knockout protons.
We determined upper limits on this background (listed in
Table I) and simulated how the proton cumulants are affected.
As within-event contributions just add particles to the event,
their effect on the cumulants is of similar magnitude as the
background itself, i.e., well below the 1% level. Assuming
purely Poissonian processes [54] in our simulation, the esti-
mated contributions of event classes with either larger average
multiplicity (pileup) or lower (Au + C reactions) were found
to induce changes of maximally 5%. And their influence
would become even smaller if the relevant physics signal
turned out to be of non-Poissonian nature. We conclude
that in the present analysis both nuisance effect classes are
inconsequential.

Systematic errors also arise at various stages of the analy-
sis. We classify those into three types:

(1) Type A errors are caused by a global uncertainty on the
proton efficiency, arising in the track reconstruction
and particle identification procedures. The estimated
efficiency error of 4–5% in the phase-space bin of
interest [48] results typically in about n×(4–5)% errors
on cumulants and reduced cumulants of order n.

(2) Type B errors arise from imperfections of the cumulant
correction schemes, i.e., event-by-event correction,
unfolding, or moment expansion. From a systematic
comparison of these methods in both simulation (see
discussion of Figs. 14 and 15) and data, we find typical
errors of 1.5% on K1, 3% on K2, 7.5% on K3, and 15%
on K4.

(3) Type C errors are due to an overall inaccuracy of
about 8–9% on the Npart calibration of our centrality
determination (caused by model dependencies and the
limited experimental resolution [38]). This impacts
the cumulants indirectly through the applied volume
correction, resulting in uncertainties of order �2% for
K2, 3–6% for K3, and 10–30% for K4. Reduced cumu-
lants are, however, affected more directly through their
normalization to 〈Npart〉.

The factorial cumulants Cn and, to some extent, also the
cumulant ratios turn out to be more robust than the Kn, show-
ing generally a factor 2–3 smaller relative systematic error.
In the results section below, we present the total systematic
error, obtained as a combination of the three types A, B, and
C. This was achieved by applying the efficiency and volume
corrections to the respective observable of interest, Kn or Cn,
while varying the detection efficiency and the volume proxy,
i.e., 〈Npart〉, within the ranges specified above. The resulting
total spread of the corrected observable was then assigned as
a systematic error, thus complementing the statistical one.

VII. RESULTS

A. Cumulants and moments

Here we present the efficiency and volume-corrected
proton multiplicity moments and cumulants obtained in
1.23 A GeV Au + Au collisions (

√
sNN = 2.4 GeV). To start,
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FIG. 22. Au + Au data: Efficiency and N2LO volume-corrected
proton cumulant ratios plotted as a function of the width of the
rapidity bin defined by y ∈ y0 ± �y and 0.4 � pt � 1.6 GeV/c.
Shown are ω = K2/K1 (top), γ1 × σ = K3/K2 (middle), and γ2 ×
σ 2 = K4/K2 (bottom) for various 5% centrality selections. Error
bars are statistical only, and dashed lines connect the data points
belonging to a given centrality. With decreasing �y, all ratios tend
toward unity (indicated also by a horizontal line); i.e., they approach
the Poisson limit where K1 = K2 = K3 = K4.

we show in Fig. 22 for a few centrality selections the ratios
of fully corrected cumulants (ω = K2/K1, γ1 × σ = K3/K2,
γ2 × σ 2 = K4/K2, where Kn are cumulants) as a function of
the width of the rapidity bin, namely y ∈ y0 ± �y, centered
at midrapidity y0 = 0.74 and with 0.4 � pt � 1.6 GeV/c.
These ratios were derived from the reduced cumulant ex-
pansions obtained by fitting one of Eqs. (9) or (10) to the
efficiency-corrected and centrality-selected data points.19 In

19For very narrow phase space, the NLO and N2LO fits give very
similar results.

this procedure, the modified volume cumulants Vn obtained
from the experimental Nhit distributions, as laid out in Sec. V,
were inserted while the values of the κn, κ ′

n, and κ ′′
n were

adjusted. Error bars shown in Fig. 22 are statistical; they were
obtained with the sampling techniques discussed in Sec. VI.
As phase space closes more, ever fewer correlated particles
contribute and one expects their distribution to approach the
Poisson limit [7] where the Kn converge, i.e., Kn = 〈Nprot〉 for
all n. From the figure, it is apparent that the data follow indeed
in all centrality selections such a behavior, with the cumulant
ratios approaching unity within their statistical errors.

Turning to rapidity bites substantially larger than ±0.1,
we found that NLO volume effects do not suffice anymore
to give a good description of the observed proton cumulants,
meaning that N2LO volume terms must be included. This is
demonstrated in Fig. 23, which, for y ∈ y0 ± 0.2, compares
the effect of the volume correction at successive levels of
sophistication. Shown are the reduced cumulants κ1, κ2, κ3,
and κ4 as a function of Npart when using 5% centrality bins:
either not volume corrected (open triangles), or with only the
leading order (LO) correction of Eq. (7) applied (open circles),
or with the full N2LO correction applied (full squares). To
not clutter the pictures too much, the NLO corrected points
are not displayed explicitly but both fit curves are shown:
NLO (dashed curve) done with Eq. (9) and N2LO (solid
curve) done with Eq. (10). The corresponding statistical and
systematic errors were obtained with the procedures described
in Sec. VI. Figure 23 illustrates that the LO scheme proposed
in Refs. [77,78] removes in our case only about 50–70% of
the volume fluctuations. While using instead NLO corrections
does improve the description, it still does not lead to a
fully satisfactory fit of the cumulants. One can see that the
linear fit of κ2, in particular, misses the data points which
definitely display a substantial curvature. When enlarging the
accepted phase space further, curvature terms become even
more important, as shown in Fig. 24, which compares volume-
corrected reduced proton cumulants and fits in the two rapidity
bins, y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. Consequently, all results
presented in the following were obtained by consistently
applying the full N2LO volume corrections.

Comparing furthermore the measured reduced proton cu-
mulants of Fig. 24 with their transport calculation coun-
terparts, as shown in Fig. 16, one can notice a qualitative
agreement for the y ∈ y0 ± 0.2 rapidity bite. In particular, the
IQMD model seems to capture the basic trends of κn with
Npart, including the presence of a curvature in κ2. However,
in our simulations, all three codes used (IQMD, UrQMD, and
HSD) generally miss the absolute magnitudes of κn, κ ′

n, and
κ ′′

n . In the present study, we refrained, however, from a more
detailed comparison of our data with model calculations.

From the reduced cumulants κn, the full proton cumulants
Kn = Npart κn as well as their ratios are readily obtained.
Cumulant ratios are shown as a function of Npart in Fig. 25
for rapidity bites y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. In contrast
to the narrow midrapidity bin y ∈ y0 ± 0.05 (cf. Fig. 22),
the deviation from the Poisson limit—where all Kn would
be equal—is blatantly apparent: Except for the notable re-
gion around Npart = 150, cumulant ratios at all orders differ
strongly from unity and they display, overall, a highly non-
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FIG. 23. Au + Au data: Efficiency and volume-corrected reduced proton cumulants κn for the phase-space bin y ∈ y0 ± 0.2 and 0.4 �
pt � 1.6 GeV/c as a function of mean Npart, using 5% centrality bins. Shown are the data without volume correction (open triangles), with
Skokov et al. [77] correction (open circles), and with N2LO correction (solid squares). Vertical bars are statistical errors, cups delimit full
systematic errors (shown on the N2LO corrected points only), and horizontal bars shown in panel (a) correspond to the width (±1 s.d.) of the
Npart distribution in the given centrality bin. Solid curves are N2LO fits, dashed curves are NLO fits (for comparison), and shaded bands are
the ±1 s.d. statistical errors of the fits (orange for NLO, olive for N2LO).

trivial Npart dependence. Ratios of cumulants are intensive
(although not strongly intensive) quantities, meaning that they
do not depend on the mean source volume. They are therefore
often favored when directly comparing data from different
experiments, where, e.g., the selected centralities may differ.

B. Correlators

As pointed out in Refs. [85–87], the essential information
contained in particle number cumulants is related to the
physics of multiparticle correlations, the underlying mecha-
nism of which we hope to unravel. Indeed, the cumulants
of a given order n contain contributions from multiparticle
correlations of all orders up to n. The n-particle correlators
Cn—also called factorial cumulants or connected cumulants or
sometimes correlation functions—can be obtained straightfor-
wardly from the cumulants Kn via Eq. (2). Making use of this
general expression, we explicitly write down the correlators

up to the fourth order:

C1 = K1,

C2 = K2 − K1,

C3 = K3 − 3K2 + 2K1,

C4 = K4 − 6K3 + 11K2 − 6K1. (11)

To illustrate their differences, Fig. 26 displays side by
side the full set of measured proton cumulants (left column)
and correlators (right column) as a function of the selected
rapidity bin width �y. Also, in Fig. 27 the dependence of
the correlators Cn on the upper transverse momentum cut pmax

t
is shown, demonstrating the saturation of Cn for a maximum
momentum of pt � 1.5 GeV/c; this is likely due to the proton
yield fading quickly with increasing pt .

General arguments regarding the nature of multiparticle
correlations have been discussed in Refs. [85,87]. In partic-
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FIG. 24. Au + Au data: Efficiency and N2LO volume-corrected reduced proton cumulants as a function of mean Npart, using 5% centrality
bins. Data from two phase-space selections are shown: y ∈ y0 ± 0.2 (blue squares) and y ∈ y0 ± 0.4 (red inverted triangles), both with 0.4 �
pt � 1.6 GeV/c. Vertical bars are statistical errors on data, cups delimit full systematic errors; horizontal bars, shown in panel (a) only,
correspond to the width (±1 s.d.) of the Npart distribution in the given centrality bin. Solid curves are N2LO fits to the data and shaded bands
are the ±1 s.d. statistical fit errors.
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FIG. 25. Au + Au data: Efficiency and N2LO volume-corrected proton cumulant ratios as a function of mean Npart, using 5% centrality
bins. Two selections are shown: y ∈ y0 ± 0.2 (blue squares) and y ∈ y0 ± 0.4 (red inverted triangles), both with 0.4 � pt � 1.6 GeV/c. Vertical
error bars are statistical, cups demarcate full systematic errors; horizontal bars, shown in panel (b) only, depict the width (±1 s.d.) of the Npart

distribution within the given centrality bin. Solid curves are N2LO fits, shaded bands represent the corresponding ±1 s.d. statistical fit errors.
The horizontal dashed lines correspond to the Poisson limit where K1 = K2 = K3 = K4.
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FIG. 26. Au + Au data: Efficiency and N2LO volume-corrected proton cumulants Kn [(a)–(c)] and correlators Cn [(d)–(f)], shown as a
function of the rapidity bin ±�y, i.e., a phase space y ∈ y0 ± �y and 0.4 � pt � 1.6 GeV/c. Dashed lines connect data points for guidance
only, bars are statistical errors, and cups indicate full systematic errors. To not clutter the graphs, the latter are shown only for a few of the
centrality selections, i.e., 0–5%, 5–10%, and 10–15%.
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ular, in Ref. [85] it was argued that the scaling of Cn with
the mean number of particles emitted into a given phase-
space bin �y depends on the range �ycorr in momentum
space of these multiparticle correlations. Two regimes were
considered: First, when very short-range correlations domi-
nate, i.e., �ycorr � �y, one expects a linear scaling Cn ∝ �y;
second, when long-range correlations are important, that is,
�ycorr � �y, one expects a Cn ∝ (�y)n scaling of the corre-
lators. However, the rationale underlying these considerations
is given by the regime of heavy-ion collisions at RHIC and
LHC where the number of detected particles is proportional
to �y. At low bombarding energies, the dN/dy distribution is
typically bell shaped and it is better to discuss the Cn scalings
directly in terms of the number of particles emitted into �y.
Hence, the two scaling regimes become Cn ∝ N for short-
range correlations and Cn ∝ Nn for long-range correlations.
This more adequate representation of the proton correlators
as a function of mean number of protons 〈Np〉 is shown in
Fig. 28, together with power-law fits Cn(N ) = C0 Nα , where
the exponent α and the normalization constant C0 are fit
parameters. The exponents resulting from these fits are listed
with their error20 for all 5% centrality selections in Table III.
One can see that, for the most central events, the values of α

are approaching n for all Cn. This suggests that a setting close
to the second scenario seems to be realized, that is, long-range
correlations dominate the correlators in Au + Au collisions
at

√
sNN = 2.4 GeV. In other words, �ycorr is of the same

order or larger than the accepted rapidity range of y0 ± 0.5,
that is �ycorr � 1. It is also interesting to note that C2, unlike
the higher orders, displays a somewhat more intricate scaling
with 〈N〉, i.e., a drop of the exponent with the centrality of
the collision. The meaning of this behavior remains presently
unclear to us.

The reason for these unexpectedly strong long-range corre-
lations is not obvious. We can only speculate that they could
be caused by collective phenomena (e.g., flow fluctuations)
or, if they are of truly critical nature, they might signal the
close-by liquid-gas phase transition [88,89]. Indeed, in a re-
cent model study using a hadron resonance gas with minimal
van der Waals interactions [90–92], the fluctuation signal
characterizing the liquid-gas endpoint was found to persist
over a surprisingly large part of the phase diagram. A dynamic
description is, however, still missing and it remains open how
exactly the correlations observed at freeze-out in momentum
space do relate to the spatial correlations build up in the initial
state of the collision and/or during the expansion of the re-
sulting fireball. Note that some of these issues have also been
addressed by the authors of Refs. [15,85] when discussing
the observable signals of critical fluctuations. The authors of
Ref. [54] have recently demonstrated in more general terms
that the observed behavior of the correlators Cn emerges
naturally when the measured particle distribution results from
the superposition of two event classes, both uncorrelated—
Poisson or binomial—but with distinct mean multiplicities.
Even a small contamination of order 10−3 of the main event

20This error is mostly statistical as α was found to be very robust
against systematic effects of types A, B, and C.
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FIG. 27. Au + Au data: Efficiency and N2LO volume corrected
proton number correlators Cn in the rapidity bin y ∈ y0 ± 0.4 as a
function of the upper cut on transverse momentum pmax

t , shown here
for 10% centrality bins. Error bars are statistical only. Saturation of
the correlators is reached for pmax

t
∼= 1.5 GeV/c.

class would lead to large values of the combined Cn. It is
therefore very important to put limits on possible instrumental
origins of such a contaminant, as we have discussed in Sec. II
(see, in particular, Table I).

Note also that the proton number cumulants as well as
their ratios are expected to be affected by baryon-number
conservation effects [93–95]. Such effects have indeed been
observed in LHC data [78,94] as deviations from the Skellam
distribution expected in the grand canonical limit. Introduc-
ing an acceptance factor a = 〈Np〉/〈NB〉 as the ratio of the
mean number of protons accepted in a given phase-space bin
and the corresponding total number of baryons, the authors
of Ref. [94] could express the constraint of baryon-number
conservation on the particle cumulants as function of a. In
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FIG. 28. Au + Au data: Efficiency and N2LO volume-corrected proton correlators Cn as a function of the mean number of protons 〈Np〉
within the selected phase-space bin, y ∈ y0 ± �y (�y = 0.1, . . . , 0.5) and 0.4 � pt � 1.6 GeV/c, and for eight centrality selections. Error
bars on data are statistical, cups delimit systematic uncertainties (shown, for clarity, only on the 0–5% selection). Black dashed lines connect
the data points in a given centrality selection and red solid curves are power-law fits Cn ∝ 〈Np〉α . Only a few of the fit curves are actually
presented; however, all adjusted values of parameter α are listed in Table III.

the low-energy regime, where the number of antibaryons
drops to zero, the expected deviations of the cumulant ratios
from the pure Poisson baseline, due to global baryon-number
conservation, are then given by

K2/K1 =1 − a,

K3/K2 =1 − 2a,

K4/K2 =1 − 6a(1 − a).

All three ratios are reduced by canonical suppression and
our proton data, where a before efficiency correction is in the
most central bin between 0.023 (for y ∈ y0 ± 0.2) and 0.051
(for y ∈ y0 ± 0.5), may be affected accordingly. Although a
turns out to be rather small in our case, baryon-number con-
servation as well as similar constraints due to electric charge
conservation will have to be accounted for in future model
calculations. The direct effect on the particle correlators Cn

has been discussed in Ref. [86] where it was found to display
a scaling behavior very different from the one observed in
Fig. 28.

At higher energies a beam energy scan has been con-
ducted by the STAR Collaboration at RHIC for

√
sNN =

7.7–200 GeV and net-proton-number fluctuations have been
analyzed and published [25–27,30,33]. In Fig. 29, we extend
the STAR systematics of net-proton cumulant ratios γ1 × σ

and γ2 × σ 2 with our low-energy point at
√

sNN = 2.4 GeV.
The STAR analysis was done for all beam energies in the
rapidity range covered by their TPC and time-of-flight detec-
tor, i.e., y ∈ y0 ± 0.5. It is not at all clear how the interplay
between fluctuation signals from the central fireball and from
spectator matter changes with energy, and how this affects
the measurements in rapidity intervals of a given size, in
particular at low beam energies where the proton rapidity
distribution is more bell shaped and much narrower than at
RHIC energies. Therefore, we present the comparison with
HADES data for two choices of the rapidity bite: y ∈ y0 ±

0.2 and y ∈ y0 ± 0.4. We prefer ±0.4 over the ±0.5 choice
because of justified fears that the latter, larger range contains
sizable contributions from the abraded spectator matter. A
naive estimate, based on a Fermi gas nucleon momentum of
pF = 0.27 GeV/c, leads indeed to a safe rapidity region of
about 0.28–1.20 (or y0 ± 0.46) for our bombarding energy;
this is also born out by transport calculations done with the
IQMD, UrQMD, and HSD models. As shown in Fig. 29,
for both presented choices of the rapidity interval and for
both centralities, the HADES data smoothly extend the K3/K2

trend observed by STAR toward lower
√

sNN . This seems to
be true as well for the K4/K2 trend in semiperipheral events,
whereas in the most central events, the HADES data suggest
a sharp decrease of the fourth-order ratio with respect to its
value at the lowest STAR energy. One has to keep in mind,
however, that the sizable gap remaining in the excitation
function between

√
sNN = 2.4 and 7.7 GeV will have to be

covered by experiments before firm conclusions can be drawn.

TABLE III. Results of the power-law fits to the proton correlators
shown in Fig. 28 using Cn ∝ 〈Np〉α . The fit parameter α and its
statistical error are listed for 5% centrality selections. The few
instances where the fit did not converge to a meaningful result are
indicated by a dash. Systematic errors on α are small, typically
smaller than the statistical error listed.

Centrality α[C2] α[C3] α[C4]

0–5% 1.86 ± 0.04 2.84 ± 0.05 3.89 ± 0.14
5–10% 1.85 ± 0.04 2.85 ± 0.05 3.75 ± 0.13
10–15% 1.84 ± 0.05 2.80 ± 0.06 3.66 ± 0.14
15–20% 1.82 ± 0.07 2.83 ± 0.09 3.72 ± 0.22
20–25% 1.78 ± 0.09 2.95 ± 0.15 4.11 ± 0.44
25–30% 1.67 ± 0.10 3.44 ± 0.40 4.46 ± 0.82
30–35% 1.59 ± 0.10 4.76 ± 1.36
35–40% 1.55 ± 0.11
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FIG. 29. Au + Au data: Evolution of the scaled cumulants Kn/K2 as a function of center-of-mass energy
√

sNN for two centrality bins
(0–10% or 0–5%, red symbols, and 30–40%, black symbols) and shown as γ1 × σ (left column) and γ2 × σ 2 (right column). STAR data
[27,33] is shown for a y0 ± 0.5 phase-space bite, and HADES data for y0 ± 0.2 (top row) and y0 ± 0.4 (bottom row), respectively. Vertical bars
are statistical errors; full systematic errors are shown for the HADES data as shaded bars and for the STAR data points as cups.

VIII. SUMMARY AND OUTLOOK

To summarize, we have investigated with HADES proton
multiplicity fluctuations in

√
sNN = 2.4 GeV Au + Au col-

lisions up to fourth order. In this context, we have done an
in-depth investigation and comparison of various efficiency
correction schemes, and we have in the end opted to apply
a highly granular event-by-event correction to the measured
proton cumulants to account for both phase-space interval
dependent and track-density related efficiency changes. Fur-
thermore, guided by transport model calculations, we have
extended the procedure proposed in the literature for stripping
off volume fluctuations by including the higher order correc-
tion terms required in the low-energy regime where HADES
operates. The resulting fully corrected proton cumulants and
correlators are presented and discussed as a function of cen-
trality and phase-space acceptance. When only a very narrow
rapidity bin is selected, we find that the observed proton

distributions are, as expected, close to Poisson. However, this
behavior changes dramatically when the acceptance opens
up and multiparticle correlations set in. In particular, from
the dependence of the correlators on the number of emit-
ted protons, we conclude that our results are dominated by
rather long-range (�ycorr � 1) correlations, strongly positive
in second and fourth orders but negative in third order. Why
and how these correlations in momentum space at freeze-out
build up from spatial correlations in the initial state and/or
expansion phase of the fireball remains to be investigated by
theory. When joined with the STAR results [27,33] obtained
in the first RHIC beam-energy scan, our data allow us to
extend the excitation function of net-proton cumulants in
central Au + Au collisions to low energies. While the present
data show a rather smooth trend for K3/K2 with

√
sNN , they

indicate a distinctive change of sign of K4/K2 when moving
from RHIC to SIS18 energies. Again, the interpretation of
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these observations requires input from advanced quantitative
calculations, e.g., hydro or transport models including phase
boundaries.

An interesting avenue to follow next is to evaluate
fluctuations of bound protons by including nuclear cluster
production—foremost, deuteron, triton, and He isotopes—
into the analysis. Indeed, in order to elucidate the origin of
long-range correlations observed for free protons, the role
played by protons bound in clusters might turn out to be
decisive, as the latter represent at

√
sNN = 2.4 GeV about

40% of the total number of protons emitted from the fireball
[48]. Also, the HADES Collaboration has recently done a
high-statistics measurement in 107Ag + Ag collisions at the
two bombarding energies of 1.23 and 1.58A GeV. These data
provide the opportunity to study both the system size and,
to some extent, the energy dependence of various fluctuation
signals. We are furthermore looking forward to see results
from the second beam-energy scan at RHIC [34], which will
provide data at energies reaching down to

√
sNN = 3 GeV.

These, when combined with our measurements, will allow
us to map fluctuation signals across the QCD phase diagram.
Also, a dedicated beam-energy scan in the

√
sNN = 2–2.5 GeV

region, to be done at SIS18, could add vital information
with regard to the liquid-gas phase transition. Further in the
future, the heavy-ion experiments CBM at FAIR and MPD
at NICA will produce comprehensive data sets of extremely
large statistics and will thus extend the present studies to much
higher precision and to higher orders.
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APPENDIX A: NONBINOMIAL EFFICIENCIES:
THE OCCUPANCY MODEL

As discussed in Sec. III, efficiency corrections to parti-
cle number cumulants are usually done [61] assuming the
efficiency to be binomial, i.e., assuming that the detection
processes of multiple particles in any given event are indepen-
dent. This can be described best with the help of a dichromatic
urn model, where successive draws from the urn stand for
particle detection processes: A white ball drawn is taken as
“particle detected” and a black one as “particle not detected.”
The initial state of the urn, i.e., the initial content of white
and black balls, is chosen such that the ratio of the number
of white balls to the total number of balls corresponds to
the single-particle detection efficiency. How the state of the
urn evolves with successive draws depends on the chosen
addition rule. In the binomial case, the balls are drawn with
replacement, meaning that every drawn ball is placed back
into the urn which thus does not change its state. Successive
draws are hence independent from each other; i.e., the urn
does not have memory. The probability of obtaining p white
balls in m draws or, equivalently, of detecting p out of m
emitted particles in an event is described by

P(p; m) =
(

m

p

)
ε p(1 − ε)m−p , (A1)

where ε is the probability to detect a given particle and

(
m
p

) are binomial coefficients. By expanding the (1 − ε) term

in Eq. (A1) and averaging P(p; m) over the distribution of
emitted particles, one finds a relationship between the average
probability P(p) to observe p particles in the detector and the
factorial moments Fn of the true particle distribution [96]:

P(p) =
∞∑

m=p

(−1)m−p Fm

m!

(
m

p

)
εm . (A2)

Using the definition of the observed factorial moments,

fn =
∞∑

p=n

P(p) p (p − 1) . . . (p − n + 1)

and inserting P(p) from Eq. (A2), one retrieves for the bi-
nomial efficiency model the well-known relation between the
measured fn and the true Fn factorial moments [55,64,65]

fn = εn Fn . (A3)

Real-life detectors are commonly designed with a finite oc-
cupancy; they can register only a limited number of particles
per given event and consequently their detection efficiency
eventually decreases with ever increasing particle number.
This effect can be studied in simulations, and for HADES the
efficiency drop was found to be of order 10–15% (see Sec. III).
Deviations from the binomial assumption have been discussed
in Refs. [67,97] and the authors of Ref. [67] considered in
particular the hypergeometric and β-binomial distributions.
Like the binomial distribution, these two distributions can
also be derived from a dichromatic urn model. In the hyper-
geometric model, balls are drawn without replacement, i.e.,
they are not put back, and the urn state changes while it gets
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FIG. 30. Comparison of the normalized distribution of detected
particles Ndet resulting from different efficiency models: binomial,
hypergeometric, β-binomial, and our occupancy model (see text). In
all cases, the input number of particles is Nin = 40 and the parameters
of the models are adjusted to realize an average efficiency of 〈ε〉 =
0.6, resulting in 〈Ndet〉 = 24. Calculations done with the occupancy
model are shown for two segmentations: N = 100, with a single-hit
efficiency of ε = 0.68, and N = 50, with ε = 0.81.

successively emptied of balls. The resulting hypergeometric
distribution of white balls obtained per given number of draws
is narrower than the binomial distribution (see Fig. 30). For
the β-binomial model, on the other hand, balls are drawn
with double replacement, meaning that for a white draw, two
white balls are put back and for a black draw, two black
balls. Again, the state of the urn changes, but the resulting
β-binomial distribution is now broader than the binomial
distribution (cf. Fig. 30). Although the properties of both of
these ad hoc models are well known, their connection to
physical phenomena playing a role in the actual detection
process is not obvious.

Here we propose another urn model, known as the oc-
cupancy model [68], that offers a more intuitive connection
with the behavior of detectors under particle bombardment.
In the occupancy model, balls are drawn with the following
replacement rule: A drawn black ball (“not detected”) is just
put back into the urn, but a drawn white ball (“detected”)
is not put back; instead it is replaced by a back ball put to
the urn. The state of the urn changes as the number of white
balls gets depleted, realizing a decrease in efficiency. In this
picture, each white ball represents one active detector module
that turns inert or busy when hit by a particle and thus has to be
replaced by a black ball to keep constant the total solid angle
covered by the device. The occupancy model naturally applies
to detectors segmented into a finite number N of modules
of solid angle � each such that the total active solid angle
covered is ε = N�. Any given module can fire when hit by
a particle, but only once; i.e., multiple hits of a module are
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binomial limit
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)
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FIG. 31. Nonbinomial efficiencies of the occupancy model as
a function of the particle multiplicity m for ε ≡ N� = 0.59 and
different values of N .

not distinguishable from single hits. Following the approach
presented in Refs. [96,98], the binomial multihit detection
probability of Eq. (A1) transforms into

P(p; m, N ) =
(

N

p

) p∑
l=0

(−1)p−l

(
p

l

) (
1 − N − l

N
ε

)m

.

(A4)
The resulting distribution of detected particles, shown in

Fig. 30, is wider than binomial. Note that, for a given ε, the
average number of detected particles decreases with respect to
the binomial case; i.e., the average efficiency is smaller than
ε. In addition, the relation between factorial moments changes
from Eq. (A3) into

fn =
N∑

m=n

(−1)m

m!
Fm

m∑
p=n

(−1)p

(
N

p

)
p (p − 1) · · ·

(p − n + 1)
p∑

l=0

(−1)l

(
p

l

) (
N − l

N
ε

)m

. (A5)

Unlike Eq. (A3), Eq. (A5) is not diagonal anymore; i.e.,
an observed factorial moment of order n depends on all
true factorial moments Fm of orders n � m � N . Solving
this system of equations for large N requires eventually a
truncation at some sufficiently high order. We found, fur-
thermore, that calculations with Eq. (A5) need to be done
with high numerical precision (at least 64-bit, if not 128-bit
floating-point arithmetic) in order to produce reliable results.
This had already been pointed out in Ref. [99] where also a
faster converging expansion of the hit probabilities in terms
of cumulants was proposed.

Figure 31 illustrates the drop of the effective efficiency
εeff = ε(m) with particle multiplicity m and its dependence on
the segmentation N of the detector; for N = ∞, the binomial
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case is recovered. For a “continuous” detector like HADES,
a strict hardware segmentation into N distinct modules is
not realized, but an effective segmentation Ñ can still be
introduced, with Ñ and � adjusted to describe the observed
(or simulated) average efficiency behavior 〈εeff〉 = ε(Ñ,�).
Such an adjustment to IQMD simulated proton moments is
also shown in Fig. 14.

APPENDIX B: NLO VOLUME-FLUCTUATION
CORRECTIONS

Here we list once more the reduced particle number cu-
mulants κ̃n with all slope-related terms, i.e., NLO volume-
fluctuation terms, including order n = 4 (see Sec. IV for
details):

κ̃1 = κ1 + v2κ
′
1 , (B1)

κ̃2 = κ2 + κ2
1 v2 + κ ′

2v2 + 2κ1κ
′
1V2 + 2κ1κ

′
1v3 + 2κ ′2

1 v2V2 + κ ′2
1 V1V2 + 2κ ′2

1 V3 + κ ′2
1 v4 , (B2)

κ̃3 = κ3 + κ3
1 v3 + 3κ1κ2v2 + 3(κ1κ

′
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1κ2)v3 + 6κ ′
1

(
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2

)
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1

(
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2

)
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(
κ2

1 + κ ′
2

)
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1 V 2
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2
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APPENDIX C: THE FOUR-PARAMETER β DISTRIBUTION

The scheme proposed in Sec. IV for volume-fluctuation
corrections of the observed particle-number cumulants,
namely by subtraction of all volume terms, requires the Npart

distribution of the applied centrality selection. While a dis-
tribution is in principle fully characterized by its moments
or cumulants, a straightforward Taylor expansion requires
knowledge of all moments or at least of a sufficiently large
number of them to keep the truncation error small. More
efficient schemes have however been proposed, for example,
the Poisson-Charlier expansion, which approximates a given
distribution on the basis of its factorial cumulants by a sum
of forward difference operators applied to the Poisson dis-
tribution [40,100]. In Ref. [40], such an expansion has been
used to model the STAR proton distributions but, as also
pointed out by the authors, the method can lead to unphysical
results, e.g., a negative yield. This is also our observation,
since typically only the first few moments of a distribution are

reliably known. Hence we took a different, more pragmatic
approach based on the four-parameter β distribution [57]
which is always positive and, in all cases of interest to our
analysis, is unimodal.

Starting from the usual definition of the β probability
distribution on the support interval [0,1], one arrives at

f (x; p, q) = xp−1(1 − x)q−1

B(p, q)
, (C1)

where p and q are dimensionless shape parameters fulfilling
p, q > 0 and B(p, q) is the β function. The latter one provides
proper normalization to unity and it is defined with help of the
� function �(z):

B(p, q) = �(p)�(q)

�(p + q)
.
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The mean, variance, skewness γ1, and excess kurtosis γ2 of
the β distribution are given by [57]

E [X ] = p

p + q
,

Var[X ] = p q

(p + q)2(p + q + 1)
,

γ1[X ] = 2(p − q)
√

p + q + 1

(p + q + 2)
√

p q
,

γ2[X ] = 6[(p − q)2(p + q + 1) − p q (p + q + 2)]

p q (p + q + 2)(p + q + 3)
. (C2)

Note that all moments are determined by the two shape
parameters p and q which can be mapped unambiguously onto
skewness and excess kurtosis, with the restriction that γ 2

1 −
2 < γ2 < 3

2γ 2
1 . This also implies that γ1 and γ2 cannot both

be zero.
In order to extend the range of the β distribution beyond

[0,1], we introduce two additional parameters, a scaling r and
a shift s, via the linear transformation

x �−→ x′ = r x + s .

With this, Eq. (C1) becomes

f (x′; p, q, r, s) =
(

x′−s
r

)p−1(
1 − x′−s

r

)q−1

rB(p, q)
, (C3)

now defined on the support interval [s, s + r]. The resulting
extended four-parameter β distribution f (x′; p, q, r, s) can be
used to approximate unimodal distributions for which the
first four moments are given: p and q are obtained directly
from the dimensionless skewness and kurtosis, the scaling r
is determined by the variance (or width σ ′ = r σ ), and lastly,
the shift parameter s is fixed by the mean (〈x′〉 = r 〈x〉 + s).
Indeed, introducing the variable ν as

ν = p + q = 3
(
γ2 − γ 2

1 + 2
)

3
2γ 2

1 − γ2
,

parameters p and q can be obtained from skewness and
kurtosis with

γ1 = 0 : p = q = ν

2
=

3
2γ2 + 3

−γ2
,

γ1 �= 0 : p, q = ν

2

{
1 ±

[
1 + 16(ν + 1)

(ν + 2)2 γ 2
1

]−1
}

.

Next, the scaling parameter r follows from the width

r = σ

2

√
(ν + 2)2 γ 2

1 + 16(ν + 1) .

And last, from the mean, the shift parameter s is obtained
with

s = 〈x′〉 − p r

ν
.

The ability of Eq. (C3) to render various unimodal function
shapes is illustrated in Fig. 32 with a set of distributions
having same mean and width, but different values of the
higher order shape parameters γ1 and γ2.
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FIG. 32. Illustration of the four-parameter β distribution
[Eq. (C3), not normalized]. The effect of nonzero skewness (a) and
nonzero kurtosis (b) on the distribution shape is shown. Note that
the limits γ1 � 0 and γ2 � 0 approximate the N (200, 50) normal
distribution also plotted in panel (a).

The extent to which unimodal distributions can be approx-
imated by Eq. (C3) is demonstrated in Fig. 33, where the four-
parameter β distribution is compared to Npart distributions
obtained from IQMD transport model calculations. These
were done for different centrality selections on the HADES
forward wall sum of charges signal, as discussed in Sec. V
(see also Fig. 20). In all cases, the first four moments agree
by construction and any visible residual deviations are caused
by moments of order higher than 4. In the fluctuation analysis
of our Au + Au data, we have also used Eq. (C3) to visualize
the experimental Npart distributions (see Fig. 21). To improve
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FIG. 33. Comparison of the four-parameter β distribution (red line) with the true Npart distributions (dark blue histogram) obtained from
IQMD for four different centrality selections. For each selection, the two distributions are normalized to the same number of counts.

the quality of this modeling, moments beyond fourth order
would have to be included and hence a more sophisticated

expansion, like Gram-Charlier [57] or Poisson-Charlier [101],
would have to be employed.
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M. Botje, P. Bunčić, T. Cetner, P. Christakoglou et al. (NA49
Collaboration), Phys. Rev. C 87, 024902 (2013).

[20] T. Anticic, B. Baatar, J. Bartke, H. Beck, L. Betev, H. Bi-
ałkowska, C. Blume, B. Boimska, J. Book, M. Botje, P.
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