PSD@CBM FEE and readout (draft, for internal use)

Finogeev Dmitry, INR RAS

November 16, 2021

Contents

Ι	PSD FEE boards	2
1	ADC board 1.1 ADC clock scheme	2 2
2	ADC addon	2
3	ADC data processing 3.1 Component channels_calc 3.2 Component common_data_collector 3.3 Component GBT_data_sender	2 2 4 5
4	ADC control4.1ADC control units4.2Addon I2C control4.3ADC Control registers4.4ADC Status registers	7 7 8 8 8
II	I CRI-PSD firmware	10
5	ADC - CRI operation 5.1 PSD CRI operation 5.2 CRI - ADC control strategy	10 10 10
6	PSD CRI data processing6.1ADC GBT emulator6.2ADC data reader6.3ADC Data Sorter6.4Raw GBT readout6.5Calibration readout6.6PSD FLIM interface6.7PSD CRI FIFOs usage	 11 12 13 13 14 14 15 15
II	II PSD evaluation board	16
7	EvB control reg	16

Part I PSD FEE boards

- 1 ADC board
- 1.1 ADC clock scheme
- 2 ADC addon

3 ADC data processing

PSD_data_readout component receive data from all ADCs, process waveform and output data in GBT packets. Schematic of component is presented on fig. 1.

Figure 1: ADC data readout scheme

3.1 Component channels calc

Channel_calc component scheme is presented on figure 2. ADC data is converted to signed values, baseline level and noise RMS are calculated, and monitoring of these parameters is available from slow control.

Figure 2: Channel data processing scheme

Strobe_generator component forms waveform gate, 'start' and 'stop' signals triggered by threshold crossing. It uses waveform length and offset parameters. Waveform processed parameter that were calculated before the start signal (waveform zero level) are latched by strobe. Waveform diagram of the component is presented on Figure 3 To reduce the probability of being triggered by a noise event, three consesutive points are compared with threshold. Central point is compared with the threshold value and two side points with the half of threshold value.

Waveform 'offset' parameter determines waveform position in the gate, in case it is 0, first point in the waveform strobe is the point above threshold (the third point compared to half of the threshold value). Maximum offset value is 13. Latched baseline level is the value one before point above threshold crossing.

If one channel in common trigger 'IN' mask parameter crosses the threshold, the common trigger is generated. All channels in included in the common trigger output parameter ('OUT' mask) collect waveform in the same way if they also cross the threshold.

Figure 3: Signal waveform strobe (length 16, offset 3)

Ch_data_collector store waveform ADC points in raw_fifo by the strobe signal. Waveform's calculated data (zero level) is stored in the header_fifo after the 'start' signal. When the 'charge ready' signal switched on, charge and waveform calculated data from the header_fifo stored in the data_fifo as the 'hit packet' header. Such approach will allow to improve charge calculation with FIR filter procedure and change of the calculation delays will not require changes in the algorithm. In the next cycle, waveform points are read from raw_fifo and (if sending waveform points parameter is switched on for debugging) stored as hit data in ch_data_fifo. After the hit packet stored, ready signal is set. In case the fifo is full, the dropped signal is set and the hit packet will be dropped. Ready and dropped signals are synchronous and have fixed latency to the waveform threshold crossing and are used for event ADC timestamp. Signals diagram of the component is presented on figure 4. The 'write size' of the ch_data_fifo should be equal to ceil(calculation_delay / waveform_lenght)*waveform_lenght. The size of ch_header_fifo should be ceil(calculation_delay / waveform_lenght). Write rate for mentioned fifo is equal to the read rate. In the case data_fifo is full when charge ready signal is set, hit is dropped and dropped-hits counter is increased by 1. Dropped-hits counter is available in channel status register and it reset after each register reading.

Readout-rate component allows to measure the hit rate per channel. Waveform-start signals counted by 16-bit counter with 70Hz rate. Each 70 Hz cycle, counter value is stored in the 128 shift register. Rate-mean register stores the sum of the values from the shift register. Two modes: low-rate and normal-rate are available for rate reading. In normal mode for 16 bit status register it is rate-mean[22 downto 7] resulting the rate/70Hz. In low-rate mode (channel-low-rate-count bit) rate-mean[15 downto 0] available for status register and result is rate/70*128Hz.

Figure 4: Channel data collecting signals

Signals could be processed one after another without dead time. If next adc point after waveform gate ends is higher than threshold, new signal gate is generated. Signal time is the next adc cycle after first gate, is not the real time of second waveform threshold crossing. Signal diagram for such case is presented on figure 5.

Figure 5: Channel data collecting signals

3.2 Component common data collector

Each channel generate single strobe with fixed latency to threshold crossing indicating the waveform measurement. 32 bit strobe word is stored to data_wf_calc_fifo with the microslice index and ADC timestamp. FSM reads the stored strobes and collects data from the channels storing the outputs to common_data_fifo, each event header word is tagged with timing and data size information stored in common_header_fifo. Schematic is presented on the figure 3.

Figure 6: Data collecting scheme from all channels fifos

FSM is switched from the 'wait' to the 'start' state when data_wf_calc_fifo_isempty becomes '0' and fifo output (with read channels strobe) is latched. Priority encoder show next read channel from the strobe and data collected from read channel to common_data_fifo with hit_packet_iterator. Input to priority encoder is shifted to bit after read channel when iterator reach last read channel. Priority encoder value could be less or equal than 32 bit. Simulation outputs is presented on figure 4.

Figure 7: Data collecting of the signal from all channels fifos

Collecting data from all channels takes two additional FSM cycles. Mean hit rate per channel in the case all channels are read is SYSCKL / total channels + 2 cycle / packet length. Test beam: 80MHz / 12 / 5 = 1.3MHz. Final setup: 120 (240) / 32 / 1 = 3.5 (7) MHz.

3.3 Component GBT data sender

Data stored in the common_data_fifo in the component common_data_collector are read by system clock with writing rate. Event and microslice headers are formed by data from common_header_fifo. Assembled GBT data packets are stored in gbt_data_fifo and are read by GBT TX clock. Signal diagram is presented on figure 8.

Figure 8: Channel data collecting signals

Data rate limit is 80bit X 40MHz (GBT). Hit rate limit per channel (without the microslice word) is 40MHz / 33 (packet length) = 1,2 MHz in the case all channels are read. The rate could be increased to 2.4 MHz hits per channel in case all 32 channels are fired. If one hit data will be less than 40bit event packet will contain 17 GBT words.

GBT packet format is presented in the tables: 1, 2, 3

word type	7976	$75 \dots 72$	7164	63 48	4740	3932	31 16	15 0		
ms header	0xA	0x0				ms index	ms index			
event header	0xB	ADC idx**	02	x0	n read channels	words in packet $*$	adc time			
hit header	hit header (tab. 1)									
hit data	hit data (tab. 2)									
hit data	hit data (tab. 2)									
hit data				hi	it data (tab. 2)					
hit data				hi	it data (tab. 2)					
event header	0xB	ADC idx**	02	x0	n read channels	words in packet $*$	adc ti	ime		

Table 1: GBT data format. [* number of GBT words in event packet: event header + all hit packets] [** ADC board index]

Maximum event packet size is ms header + event header + 32 * (hit header + 8 * hit data) = 290 GBT words.

word	79 72	7164	6336	35 16	15 0
1	$_{\rm channel}$	words in packet $*$	0x0	signal charge	waveform zero level

Table 2: hit packet header. [* total GBT words in hit packet: header + data words]

word	7964	6348	4732	31 16	15 0
1	0x0	waveform point n	waveform point n+1	waveform point $n+2$	waveform point $n+3$

Table 3: hit packet data word.

Reserved first 8 bits in GBT data flow:

- 0x0:0x20 hit header ch number
- 0x3 hit data word (DOTO)
- 0xA microslice header
- 0xB event header
- 0xC CRI FLIM if ace mcs delimiter word
- $\bullet~0\mathrm{xE}$ status packet word
- $\bullet~0\mathrm{xF}$ control packet word

4 ADC control

4.1 ADC control units

Status and Control of the ADC are arrays of 64 32 bit words. ADC control system includes 4 firmware units: gbt-control-sender, gbt-control-reader, gbt-status-sender, gbt-status-reader. ADC control and monitoring strategy is described in sec. ??

gbt-control-sender is placed on CRI side and send control packet (129 X 16bit) via gbt to ADC. Packet could be sent at any time and is not in conflict with microslice flow to ADC. gbt-control-reader receives the control packet, and updates registers array by rising the signal "updated".

word	value
0	0xABBA
1	control(0)(15 0)
2	control(0)(31 16)
3	control(1)(15 0)
4	control(1)(31 16)
127	control(63)(15 0)
128	control(63)(31 16)

Table 4: Control packet to ADC.

gbt-status-sender sends the status or control registers from ADC (packet 32 X 80bit). Status/control packet is prioritized to data flow, and gbt-data-fifo is not read during transaction. Status and control words begins with 0xE and 0xF accordingly to be distinguished from data flow.

Sending of the control or status packets could be initiated by CRI side with 0xABBB and 0xABBC codes in MSB of RX data.

bits	7976	75 64	63 32	31 0				
word	code	addr	reg1	reg0				
0	Ε	0	$\operatorname{status}(1)$	$\operatorname{status}(0)$				
1	Е	2	$\operatorname{status}(3)$	$\operatorname{status}(2)$				
31	Е	30	$\operatorname{status}(31)$	$\operatorname{status}(30)$				

Table 5: Status packet from ADC.

bits	79 76	75 64	63 32	31 0				
word	code	addr	reg1	reg0				
0	F	0	$\operatorname{control}(1)$	$\operatorname{control}(0)$				
1	F	2	$\operatorname{control}(3)$	$\operatorname{control}(2)$				
31	F	30	$\operatorname{control}(31)$	$\operatorname{control}(30)$				

Table 6: Control packet from ADC.

gbt-status-reader reads each gbt word whitch starts with 0xE or 0xF and updates the control or status registers. Two counters indicate the time passed from last update. Read back control register is compared with actual value on CRI side.

4.2 Addon I2C control

4.3 ADC Control registers

addr	31 30	29 28 27 24 23 20 19 16	1514	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
0	0x0	threshold ch1	0x0	threshold ch0		
1	0x0	threshold ch3	0x0	threshold ch2		
2	0x0	threshold ch5	0x0	threshold ch4		
3	0x0	threshold ch7	0x0	threshold ch6		
4	0x0	threshold ch9	0x0	threshold ch8		
5	0x0	threshold ch11	0x0	threshold ch10		
6	0x0	threshold ch13	0x0	threshold ch12		
7	0x0	threshold ch15	0x0	threshold ch14		
8	0x0	threshold ch17	0x0	threshold ch16		
9	0x0	threshold ch19	0x0	threshold ch18		
10	0x0	threshold ch21	0x0	threshold ch20		
11	0x0	threshold ch23	0x0	threshold ch22		
12	0x0	threshold ch25	0x0	threshold ch24		
13	0x0	threshold ch27	0x0	threshold ch26		
14	0x0	threshold ch29	0x0	threshold ch28		
15	0x0	threshold ch31	0x0	threshold ch30		

Table 7: ADC channels threshold control.

addr	31 28	2724	23 20	1916	15 12	11 8	74	30		
16	0x0 status ch sel			ch sel	waveform length 07 [$(reg+1)^{*}4$] strobe offset 012 control b					
17	${\rm negative \ channel \ mask \ ibit = ich}$									
18	I2C HV bus									
19	microslice gen counter@25ns									
20	microslice period									
21	common trigger OR mask									
22	common trigger output									
23	trigger pulser rate [count @ ADC clock] $(0x0 = off)$									
24	(0x0 = off) $(0x0 = off)$ $(0x0 = off)$									
25	common trigger AND mask									

Table 8: ADC readout control.

bit	description
0	send waveform
1	ms gen standalone
2	readout fsm reset
3	errors reset
4	channel low rate count
5	reset channels drop counter

Table 9: Control bits

addr	31 25	2424	2323	22 16	158	7 0
18	0x0	start	WR	i2c dev addr	mem addr	data

Table 10: HV control via I2C.

4.4 ADC Status registers

Status registers map is presented on table 11.

addr	31 30	2928	2724	2320	1916	1514	1312	11 8	74	30
0	microslice index 31 0									
1	microslice index 63 32									
2	ADC time									
3		RУ	K wrclk err	cnt		RX err frclk cnt				
4		RX	err detect	cnt		I2C HV bus				
5				0x	:0	temp				np
6		sel. ch	annel basel	sel. channel baseline						
7		sel. ch	annel dropp	ped hits	sel. channel hit rate					
8		GBT	f event dro	pped		GBT fifo count				

Table 11: ADC status register map.

addr	15 10	99	88	70
4	0x0	error ack	busy	DATA

Table 12: HV status via I2C.

Status registers comments:

- $\bullet~{\rm RX}$ err detect cnt counter@RXclk of RX error detected bit.
- RX err frclk cnt counter@RXclk of state when frame clock is not ready.
- $\bullet~\mathrm{RX}$ wrclk err cnt counter@RXclk of state when word clock is not ready.

Part II CRI-PSD firmware

5 ADC - CRI operation

ADC - CRI communication scheme is presented on fig. 9.

Figure 9: ADC - CRI GBT connection

GBT-FPGA on ADC board side recovers RX clock (see 1.1), microslice (64 bit@40MHz each GBT word) and control packets (see 4.1). Microslice index is transferred to ADC board in clock domain synchronous to CRI TX clock and each ADC cycle in microslice is enumerated with adc time index. Measured hits are labeled with microslice + adc time indexes and sent to CRI via GBT TX. Control and monitoring of the data taking, MPPC HV adjustment and MPPC board temperature control is available via GBT control packets.

TODO: update with 2 FPGAs

5.1 PSD CRI operation

5.2 CRI - ADC control strategy

Implementation details are described in sec. 4.1

adc-control-sender unit is placed in CRI receive mapped adc control registers (64X32bit) from AGWB "psd-adc". By software command all registers could be sent to ADC. After each transaction of the control packet ADC send back control register. adc-status-reader unit read control and status packet from ADC on CRI side. Status packets received from ADC updates status on AGWB "psd-adc". Received control packets are compared with the actual control registers from "psd-adc" and "match" signal indicate correctness of ADC configuration. ADC reset cycle (FSM or errors) must be done in 4 writes (here and below several fields writes counted as single command):

- 1 write 0x1 to reset register
- 2 trigger sending of the control packet
- 3 write 0x0 to the reset register
- 4 trigger sending of control packet

Control and status packets could be sent periodically, that allows to only read AGWB status registers for ADC monitoring. Also control and status packets could be requested by CRI side, in that case monitoring can be done with one write command (trigger status request) and one read command of the status.

To save registers space, the channel status (base level, RMS, hits dropped, hits rate, 64 bits in total) is presented in the status registers map only for one channel. The number of monitored channel is set by "mon-ch-sel" field. After each time the field is changed on the ADC side, the status packet is sent to CRI automatically. That allows the monitoring of the channel status in 3 command:

- 1 write the number of monitored channel to register
- 2 trigger sending of control packet
- **3** read status fields of channel status

Also status packets are sent to CRI automatically after each I2C operation that allow to configure addon register in 5 commands:

- 1 write data for I2C transation (start = 0)
- 2 trigger sending of control packet
- $3\,$ write start to $1\,$
- 4 trigger sending of control packet
- $5 \,$ read I2C status

Control and monitoring of the ADC board routine will be revised by experience of using current firmware prototype in mCBM beam tests in June 2021. Some optimization options are:

- Reset cycle could be automated on ADC and CRI sides for single write AGWB command
- ADC control packet could be sent automatically after changing of registers (with timeout) and ADC configuration mismatch while writing new control values could be processed on CRI side. That will allow just write new configuration on software level.
- Errors could be reset automatically after sending from the ADC these errors will be stored and alarmed on CRI side
- Channel status map could be received automatically with low rate update, representing full channels status table in AGWB
- I2C operation could be automated with full addon control and status registers map in AGWB
- to do not reduce data rate with status registers, packets could be sent via 4 bits of slow-control bus.

6 PSD CRI data processing

Figure 10: PSD data processing in CRI

Figure 10 present PSD data processing flow. Each ADC board is connected to psd-device with 2 GBT links. There are 4 psd-devices per SLR, 16 GBT links, 8 psd-devices, 2 SLRs in total. Each gbt link is connected to ADC-control, adc-gbt-emu and data-reader units. adc-gbt-emu mutes gbt link and emulates adc gbt packets for readout tests purposes (see sec. 6.1). adc-control translate adc control and status registers to AGWB (see sec. 5.2). data-reader unit read adc data packets, drop corrupted data and provide each packet with microslice header in separate fifo (see sec. 6.2). Also adc-reader can mute any gbt link. data-sorter unit (see sec. 6.3) reads data and header buffers from data-reader and sort data by microslice intervals. data-sorter throttle data flow in case FLIM interface is not ready to data transport. While correct operation only data-sorter should throttle data, all other units are able transport data at full 2 gbt links load. Two slow readout units are available for calibration and test purposes: raw-gbt-readout (see sec. 6.4) and data-readout (see sec. 6.5). raw-gbt-readout allows to take data as it received from adc board including control packets. It was implemented as one of the first units of PSD-CRI, now it is rudimentary and can be used for debug. data-readout transport sorted and throttled data for tests and calibration purposes.

6.1 ADC GBT emulator

adc-gbt-emu generates adc data packets with variable event and hit load in the frequency range 1/107Hz ... 20MHz. The hit header contains microslice index and hit data continuous hit counter. adc-gbt-emu is inserted before data-reader and mute gbt link if active.

adc-gbt-emu control:

- turn_on mute input gbt link and output generated data if is on.
- adc_id adc board index placed in event header
- event_rate is number of 40Mhz clock cycles between packets (between start of packet). If previous packet was not sent, and new ones comes, new one is skipped.
- event_len number of hits per event 1 ... 255. Emulate read channels.
- hit len number of hit words, including hit header 1 ... 255. Emulate waveform data

Emulator FSM is based on three counters, simulation signals diagram is presented on fig. 11; generated data format is presented on tab. 13.

Figure 11: ADC GBT emulator signals

word type	7976	75 72	71 64	6348	4740	3932	31 16	150		
ms header	0xA		0x0		ms index					
event header	0xB	ADC idx**	0x0		n hits	packet len $*$	0x	0		
hit header	hit	number	words in hit packet ***			ms index				
hit data			hit cou	inter [79()]					
hit data			hit cou	inter [79()]					
hit data			hit cou	inter [79()]					
hit data			hit cou	inter [79()]					
event header	0xB	ADC idx**	0x0		n hits	packet len *	0x	0		

Table 13: GBT data format. [* number of GBT words in event packet: event header + all hit packets] [** ADC board index] [*** total words in hit packet, including hit header]

6.2 ADC data reader

adc-data-reader reads GBT packets from one GBT link and store its to event-fifo. Then last data word is pushed to event-fifo, header word with packet length and microslice index pushed to separate header-fifo. adc-data-reader is muted then adc-data-sorter is not ready, also link could be muted by AGWB. If corrupted data detected, corrupted counter is increased by one. If fifos are semi-full, dropped counter increased by one and data will be throttled until fifo will have space for event. Current FSM is an prototype, signal diagram is presented on figure 12.

Figure 12: ADC GBT packets reader

TODO: update FSM with hit word idx $0\mathrm{x}3$

6.3 ADC Data Sorter

adc-data-sorter reads data from fifos at adc-data-reader units and sort data by microslice index (mcs). Number of gbt links is a generic parameter, currently it is 2. Output data flow as microslice (mcs) header and events packets from all gbt links is forwarded to flim-iface or data-readout units. If fifo of target unit has no space for packet, the dropped flag is set and hit-drop counter increased for each event. If dropped flag is set while new mcs is opened, mcs-drop counter increased by one and the entire mcs is dropped.

Components header-fifo and event-fifo from adc-data-readers for all gbt links are connected to gbt-data-sorter component. Each new mcs value from TFC or local generator stored in ms-fifo. After first mcs pushed to fifo, the 'reader-ready signal is set and adc-data-reader start sending data.

FSM loops throught all gbt links and read one by one only links with mcs value less or equal to current mcs. Data for links with equal mcs are forwarded to output, for links with less mcs value data is dropped. As ADC take mcs value from CRI via GBT, gbt link is empty means that data for current mcs still can appears with delay. After new mcs pushed to fifo, data-delay-offset counter started. If the counter is equal to offset value, mcs-ready signal is set. When all links have mcs higher than current mcs or empty and mcs-ready singal is set then all data for current mcs was read. If gbt links are not empty, mcs-ready singal is ignored.

After all links are ready for next mcs, FSM swithced to next-mcs state. Next mcs read from fifo and header with new mcs value is sent to the output stream. Simulation signal diagram presented on fig. 13 Output data represent combined GBT packets from all GBT link. All events from GBT links for one mcs follows one after another. Data for different mcs divided by mcs header with format 0xDAF0 + microslice (64bit).

Figure 13: gbt-data-sorter signals diagram: mew ms read and event sent from one link, [could be not actual]

TODO: pucture actual signal diagram

6.4 Raw GBT readout

raw-gbt-readout is based on 96 to 24 asymmetric synchronous fifo. Each non-zero gbt word increase 16 bit counter and force fifo wren signal. fifo input is 16 bit counter concatenated with 80bit gbt word.

raw-gbt-readout control:

- gbtlink_sel MUX gbt link in psd-device
- drop crtl words filter gbt words with keys MSB 0xE and 0xF if is on
- reset_fifo force fifo reset. important AGWB trigger signal generate 1 cycle signal that is not sufficient for fifo ip-core reset (at least 5 needs). This is not solved, fifo could not nr reset randomly. Will be fixed later.
- rawgbt_fifo_cnt fifo occupancy counter
- rawgbt fifo cntn output data

6.5 Calibration readout

IPbus-face-component read data stream from gbt-data-sorter and resize data to width 32 bit. Data stream from gbt-data-sorter stored in fifo-ipbus-face with 80bit write width and 160 read width. Output 160bit word divided in 5 32bit words. Each IPbus read cycle make counter 0..4 increased by one, fifo-ipbus-face is read when counter equal 4 and ipbus-read signal was raised from AGWB. While reading empty fifo-ipbus-face all bits are '1'. Signals diagram is presented on figure 14.

> 👹 Data_I[79:0]	0105000000000000019			00000	00000	0000000	00000)			Хро	(on	000	000000		00	000	00000	0000000	X oo	X 000	000000	00000	X	
🕌 IsData_I	1																								
HPbus_rd_i	1																								
🔓 ipbus_rd	1																								
> MIPbus_fifo_count_o[13:0]	0005		000'	7			X		0006		Х		0005		00) oc	05	$\langle -$	0006		χ οο	07	ᅘᄽᅋ	i <u>/ 000</u>	° X
🔓 ipbus_empty	0																								
₩ fifo_almost_full_o	0																								
> W Data_FIFO_160bit_map[0:4][31:	0000000,0000000,03030000,000000	00000000	,00000000,0	00670	000,0	00 1 00	00000	000,000	100000,0	<u>i</u> x 00	050000	,000	00000	, oo 🔨 🛛	000000	0,000	00000	,00)	000000	0,00	000000	,00	000000	00,0000	0000,0
l ipbus_map_counter	2	1	Х	2 X	зX	4 0	χt	- <u>χ</u> 2	XIX	4 <u>(</u> 0	$\langle 1 \rangle$	2	(3)	4	1	X 2	3	4		χ2	X³	4	o X I	χzχ	зX
🔓 ipbus_rden	0																								
> 🖬 IPbus_data_o[31:0]	03030000	0000	0000 X	Ω	ωχ	00 1 00	00000			t voo	<u>) oo</u>	œ			00000	X 🚥			000000	x oo	X 00		000000	XooX	00 X 0

 $Figure 14: IP bus-face \ signals \ diagram$

- 6.6 PSD FLIM interface
- 6.7 PSD CRI FIFOs usage

Part III PSD evaluation board

7 EvB control reg

range	description
063	EvB control
64 127	ADC control
128 191	EvB status
$192 \dots 255$	ADC status
256	EvB GBT readout
257	EvB readout fifo count

Table 14: EvB registers mapping

addr	31 28	27 24	2320	1916	15 12	118	74	30			
0		0x0 control word									
1		microslice gen counter@25ns									
2		microslice period									

Table 15: Evaluation board control registers.

bit	$\operatorname{description}$
0	data processing reset
1	error reset

Table 16: Control word bits

addr	31 28	2724	2320	1916	15 12	11 8	74	30		
0		0x0		control status	GBT status					
1		sorter	ms droppe	ed	sorter hit dropped					
2	g	bt reader l	ink 1 ms d	gbt reader link 0 ms dropped						
3		st	atus age	control age						

Table 17: Evaluation board status registers.

bit	description
0	MGT phalin cpll lock
1	RX word clock ready
2	RX frame clock ready
3	MGT link ready
4	TX reset done
5	TX FSM reset done
6	RX ready
7	RX error detected
8	RX error latched

Table 18: GBT status bits

$_{\rm bit}$	addr	description
0	16	control readback correct

Table 19: control status bits