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• Time-of-flight principle is conceptually simple:  measure difference in 
arrival time of particle at two planes t = t1 – t0 then velocity:  b = L /ct

• Combine with a measurement of its momentum: p = bgmc
Mass of particle can then be calculated:

• At high energies particles are relativistic: 
velocity saturates → c, time difference drops fast

• Focused on long-lived charged-particle identification (e, µ, π, K, p) 
in particular charged hadron separation at low momentum

• The time for a kaon to travel 10 m is 33.37 ns at 10 GeV, while for a 
pion it would be 33.34 ns:  the difference is only 35 ps

• The separation in standard deviations:  Ns ≈ |m1
2 – m2
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Motivation (1)
• European Strategy for Particle Physics:

the next future collider should be an e+e- Higgs factory
→ expect this to be a focus for the R&D Roadmap

• Dedicated particle identification detectors have been 
absent from the designs of experiments, until recently —
main focus has been on Particle Flow calorimetry and 
lepton ID, rather than hadron ID

• However, they do all feature excellent dE/dx from tracker
(or even more performant cluster counting dN/dx) 

Drawback for particle ID is region where dE/dx curves cross 
at around 1-2 GeV for p-K-π separation

• Combination of a modest TOF detector can cover this hole, 
provides PID up to a few GeV, complemented with dE/dx
at higher momenta

• Here assumed 100 ps/hit, over 10 layers of calorimeter
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Complications
• Energy loss + multiple scattering between the IP and TOF detector 

→ track length and momentum measurement biased
→ minimize material before TOF detector

• Combining signals within a layer, and between layers, of the TOF 
detector requires care (see example illustrated) 

• Dedicated TOF detector placed after tracker but before calorimeter 
→ its own material budget should be limited

• Increasing the path length improves TOF (linearly), but the area to 
be covered by the detector increases as the square
→ detectors typically need to cover large areas, cost-effectively

• Radiation tolerance is an issue for application at hadron colliders 

• Start time (t0) needed, from dedicated detector or elsewhere

• Electronics: balance between time resolution, spatial resolution, 
data rate and power consumption

• System issues: synchronization over a large area challenging
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track at IP
track at ECAL

B. Dudar, LCWS 2021
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Motivation (2)
• Highest priority of ESPP is of course the full exploitation of the LHC

Upgrades of ATLAS & CMS for HL-LHC:  R&D now ≈ complete 
However, future upgrades still planned:  for LHCb & ALICE at least

• Excellent hadron ID is essential for flavour physics, and there is an 
broad future programme planned—likely to increase in priority 
if recent evidence of Lepton Flavour non-Universality persists

• RICH detectors are the technology of choice at high momentum
But limited coverage <10 GeV with gas radiators (unless pressurized)
Silica aerogel as radiator might cover the low-momentum end, but 
(due to its low density) gives few photons, difficult reconstruction
in the busy environment of the LHC → abandoned by LHCb 

• Pushing TOF to 10 ps per track over 10 m path would cover region 
up to 10 GeV for K-π separation → target for LHCb future upgrade

• One can dream of pushing further towards the picosecond level
→ cover the full range of particle ID required, with a single system

(but bear in mind, 1 ps = 300 µm at the speed of light)
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10 ps TOF over 10 m

K

LHCb RICH EPJC 73 (2013) 2431
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• Fast timing has many other applications beyond TOF particle ID

• A fast timing revolution is underway, as detectors that 
traditionally have been spatially segmented now add time 
as an extra dimension:  typical target is 30–50 ps resolution/MIP

• This has been driven by pile-up suppression in hadron colliders
—in particular the unprecedented challenges of the HL-LHC:
signal events will have up to 200 min-bias collisions superposed
Can be separated by binning in time as well as space

• 4D tracking (x,y,z,t), and 5D calorimetry (x,y,z,t,E): 
Contribution to tracking pattern recognition, shower analysis—
imagine going from a static image of showers, to a movie 
where neutral hadrons arrive later than the photons, etc.

• Timing can also extend physics reach, e.g. for long-lived particle 
(LLP) reconstruction—a booming field of dark sector searches 

• This extends well beyond the TOF application (e.g. see ≈ all of the 
other task forces) → should drive synergy in the R&D roadmap

Particle flow calorimetry

Fast timing
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• Contributions to timing resolution:

– Example of LHC end-cap timing layers:  the detector contribution 
σdet comes from Landau fluctuations in the silicon sensors

– The electronics contribution σelec has following components:

– Need fast signal and excellent S/N
LGAD gain:  increase signal S, but keep noise N under control
Contribution from the TDC bin width, must also correct for 
integral non-linearity (INL, from uneven bin sizes)

– The clock contribution (needed to synchronize detector) σclock

• Other contributions: transit-time spread (TTS) in photodetectors, 
pixel size, emission point of photon in radiator, start-time t0, 
chromatic effects, cross-talk, etc.  → Careful calibration is essential

Resolution
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Jitter Time walk TDC binning

Amplitude → time-over-threshold

Time-walk vs TOT

INL: periodic over 1024 bins = 25 ns

J. Schambach, nucl-ex/0305035

HPTDC
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• Many of the technologies used cross over with other disciplines, from tracking to calorimetry,
and use the sensors discussed elsewhere in this (and the other) task forces

• Cannot cover exhaustively, instead selected a few examples to illustrate detector systems
( existing / in preparation / future development ) for each technology
+ will have to pass quickly over detectors that have been covered elsewhere

• Tried to include detectors mentioned in the questionnaire responses, apologies for any omissions 
+ bias toward experiments discussed at CERN—this symposium is opportunity to gather missing input 

Disclaimer:  references given to where information collected, rather than original sources
—thanks to all who have provided material

1. Scintillators:  classic solution, now developed for timing layers  (TF5+6, SiPM)

2. Gaseous detectors:  multigap RPCs, new ideas to push timing resolution with MPGDs  (TF1)

3. Silicon detectors:  recent development of LGADs for end-cap timing layers  (TF3, LGAD)

4. Cherenkov-based detectors:  pushing for ultimate resolution  (MCP)

Technologies
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1.  Scintillators
• Fixed-target experiments have geometry well adapted to TOF

Take as example NA61 (SHINE), flight distance 13 m

• Most recently added scintillator hodoscope:  Forward-ToF
2.5 cm-thick bars of plastic scintillator (Bicron BC-408) 
rise time 0.9 ns, decay time 2.1 ns, attenuation length 210 cm

• Read out at both ends with with fishtail PMMA light-guides to
2′′ photomultipliers (Fast-Hamamatsu R1828)

• TOF resolution ~110 ps

TOF technologies
S. Afanasiev et al., CERN-EP/99-001

dE/dx and TOF separately
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N Abgrall et al 2014 JINST 9 P06005

NA61

dE/dx + TOF combined  (5-6 GeV, NA49 Pb-Pb)



µ-

T2K Near Detector upgrade
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Simulated ν interaction in ND280

• The near detector of T2K (long-baseline ν experiment) is being upgraded 

TOF system

Scintillator bars
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C. Betancourt et al, JINST12 (2017) P11023

• TOF system required to give unambiguous determination of the flight 
direction of charged particles, to ensure tracks come from ν interaction

• I cm-thick cast plastic scintillator bars (EJ-200) read out by array of
large area SiPM (6 × 6 mm2 Hamamatsu S13360-6050PE MPPC) 

• SiPM:  compact, robust, insensitive to B field, operate at low voltage, 
low power consumption, photodetection efficiency up to 40%;  
Drawbacks: high dark count rate (DCR), radiation sensitivity → cooling
Similar solution explored for PANDA TOF, with smaller scintillator tiles/rods

T2K Near Detector upgrade
• The near detector of T2K (long-baseline ν experiment) is being upgraded

Overlapping scintillator bars

TOF technologies

Constructed planes

Cosmic events         

~ 130 ps resolution

SiPM showing constituent SPADs

T. Lux, SPSC 13/4/21

SiPM array (MUSIC readout)



CMS Timing Layer
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MIP Timing Detector (MTD)

Barrel (BTL) instrumented with scintillator bars
Endcaps (ETL) with silicon detectors (LGAD)

Technology selected according to requirements:

Both detectors cost ~ 10 MCHF, but…
BTL covers 3x area of ETL with 25x fewer channels
However, it would not handle 10x higher radiation

HGC



CMS Barrel Timing Layer
• Faster scintillators:  LYSO:Ce (Lutetium Yttrium Orthosilicate

crystals doped with Cerium):  excellent radiation tolerance, 
high light yield (∼ 40,000 photons/MeV), fast scintillation 
rise-time (< 100 ps), relatively short decay-time (∼ 40 ns)

• Well-established in PET scanners:  excellent cross-fertilization!
TOF also very relevant there: provides resolution along line-of-flight  

• 166k LYSO crystals readout with SiPMs at each end, attached to the 
inner wall of Tracker Support Tube  (r = 1.15 m, length = ±2.6 m)
→ has to be installed before tracker

• Thermoelectric coolers to improve 
SiPM radiation tolerance: run at -45°C

• Time resolution: 35 ps at start 
and 60 ps by the end of HL-LHC

Time-of-flight particle ID as a “bonus”: 
2σ K-π separation up to p ~ 2 GeV

Roger Forty TOF technologies 10½A. Apresyan, LCWS2021



Quantum fast-scintillator R&D [see TF5] 

Roger Forty TOF technologies 11K. Dropiewski et al, NIMA 954 (2020) 161472

• Colloidal Quantum Dots irradiated with a UV light:  different sized nanoscale dots emit different colours 
of light due to quantum confinement

• Semiconductor scintillator based on InAs Quantum Dots functioning as luminescence centres 
embedded in a GaAs matrix can have uniquely fast scintillation properties with low self-absorption 



Quantum fast-scintillator R&D [see TF5]

• Colloidal Quantum Dots irradiated with a UV light:  different sized nanoscale dots emit different colours 
of light due to quantum confinement

• Semiconductor scintillator based on InAs Quantum Dots functioning as luminescence centres 
embedded in a GaAs matrix can have uniquely fast scintillation properties with low self-absorption 

• Related R&D pursued by RD18 (Crystal Clear)  [see E. Auffray, TF5]

CdSe nano-platelets deposited on LYSO substrate → faster response

• Challenge to produce large-scale samples:  3D printing of 
scintillator being investigated, to produce arbitrary shapes 
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YAG (voxel size ~ 50 x 50 x 10-50 μm)

G. Dossovitky, Kurchatov Institute

R. Turtos et al.,
JINST 11 (2016) 

P10015

Cadmium selenide nano-platelets

11½



ALICE2.  Gaseous detectors [see TF1]
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F. Carnesecchi, arXiv:1806.03825

TOF technologies

3.7 m from IP
150 m2 total area! 
1638 modules

• Multi-gap RPC well-established technique, excellent timing, easily 
segmented, work in strong magnetic field, relatively easy to build
e.g. ALICE TOF

• Stacks of 1 mm glass plates, total of 10 gas gaps of 250 mm
High resistivity plates required (> 1010 Wcm) to limit discharge area

• Gas used is C2F4H2 + SF6 + C4H10

• Timing resolution 56 ps achieved



Gaseous-detector R&D

TOF technologies 13

BGOegg @Spring-8

C. Williams, AIDAinnova 14/4/21

M. Hartz, SPSC 13/4/21  WCTE

Roger Forty

S. An et al, NIMA 594 (2008) 39

Propose to use this type of MRPC:

• MRPC are in widespread use for TOF systems:  upgrade of NA61, 
proposals SHiP and Water Cherenkov Test Experiment @CERN
HADES@GSI, EMPHATIC@Fermilab, E50@J-PARC, BGOegg@Spring-8, CBM, STAR…

• Developments towards: 

– faster timing (e.g. increasing number of gaps)
– Higher rate capability:  managing gas flow, glass resistivity

• Fast timing micro-pattern gas detectors also being developed
e.g. FTM based on the µ-RWELL structure [see P. Verwilligen, TF1] 

M. Poli Lener et al, NIMA 824 (2016) 565FTM • ~300 ps resolution 
seen for simulation
[Y. Maghrbi et al, 
NIMA 954 (2020) 161666]

• Alternative approach: 
couple Cherenkov 
radiator to MPGD



PICOSEC development
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• Hybrid detector:  Cherenkov signal (CsI PC) amplified via MPGD
Developed with RD51 [see next talk, F. Tessarotto]

• Micromegas:  80% Ne + 10% C2H6 + 10% CF4 (COMPASS gas)
Signal has two distinct components: fast electron peak (≈ 0.5 ns) 
slow ion tail (≈ 100 ns)

• Now working on detector stability, photocathode robustness (DLC, 
nano-diamond), large-area coverage:  10x10 pad module planned

Considered for muon system of ENUBET (R&D for tagged ν beam) Multipad prototype (each 1 cm)

F. Brunbauer, INSTR-2020

J. Bortfeldt et al, NIM A 903 (2018) 317 

Single p.e.

24 ps for muons 
(~ 10 p.e./muon)



3.  Silicon detectors [see TF3]
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• Low-gain avalanche diodes (LGAD) are currently the silicon 
detectors of choice for fast timing, adopted by ATLAS/CMS
Initial idea was for “APD with low gain” to compensate for 
charge loss after irradiation  [P. Fernandez, PhD thesis 2014]

Multiplication layer adds modest gain x10–20:  
improves signal slope while keeping noise under control

• Early adopter: HADES prototype beam telescope 
150 µm strips, provides start time t0 for TOF system

Insensitive area around gain layer
Junction Termination Extension (JTE):  50-100 µm

limits ability to achieve fine pitch

ATLAS/CMS use 1.3 x 1.3 mm2 pads
Need to scale up from ~cm2 to ~10m2 area

S. Grinstein, IAS-HEP 2021

Corresponds to 47 ps/hit

J. Pietraszko et al, Eur. Phys. J. A (2020) 56



ATLAS Timing Layer
• High Granularity Timing Detector (HGTD) for the end-caps

(similar design for CMS ETL, some common development)

• Active area: 12 cm < r < 64 cm, 2 disks per side, each supporting 
double 50 µm sensor layers :  15x30 pads of 1.3x1.3 mm2

• Bump-bonded to readout ASICs, flex tail to outer-radius electronics
Cooling plate operates at -30 °C: evaporative CO2, 20 kW/endcap

• Maximum fluence: 2.5x1015 MeV neq/cm2, 2 MGy by end of HL-LHC 
Inner ring will be replaced every 1000 fb-1 due to radiation damage
Layout optimised for uniform performance vs radius
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CERN-LHCC-2020-007; ATLAS-TDR-031

3.6 M channels, 6.4 m2, 30-40% X0

Effect of irradiation

Cross-section of disk



35 µm bulk

Fast silicon R&D
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• Very active area, in the framework of RD50 and elsewhere:  
LGAD stability after heavy irradiation remains a concern → increase 
radiation tolerance further + achieve finer granularity + push timing 

For single (thin) layers, timing resolution < 20 ps has been achieved
Would be difficult to achieve for a large system?  [discussion at TF3]

• AC-LGAD: gain layer charge coupled capacitively to surface through thin 
(~ 500 nm) oxide layer, segmentation provided simply by surface electrodes
Excellent spatial resolution can be achieved via charge-sharing  

Also Deep Junction (DJ-LGAD), Trench isolated (TI-LGAD), Inverse (iLGAD)…

• Other approaches to fast timing in silicon may also compete:  3D, Timepix...
Solid-state Electron Multiplier (SSEM):  amplification layer obtained via a 
GEM-like metal structure embedded within the silicon bulk

Y. Zhao et al, 
NIM 924 (2019) 387 

AC-LGAD

DJ-LGAD

TI-LGAD

iLGAD

E. Currás, VERTEX 2020
N. Cartiglia, TF3

LGAD timing

3D silicon



Silicon prospects
• ALICE3:  new detector based around CMOS MAPS (Monolithic Active 

Pixel Sensors) under study for the HL-LHC era 

TOF resolution < 20 ps needed at system level, requires advances both 
on sensors and microelectronics  [L. Musa, input symposium 19/2/21]

• Belle II detector upgrades planned in ~2026:  pile-up suppression not 
an issue for e+e- colliders, but use of timing layer under consideration 
to cover gaps between radiator bars of TOP detector

• EIC:  now an approved project, detector technologies not yet fixed 

• FCC-hh:  pileup 1000, timing requirement to mitigate even more severe: 
resolution < 10 ps required  “or very clever new ideas needed…”
[M. Aleksa, input symposium 19/2/21]

+ radiation dose 10x higher—but there is time for R&D, technical design 
would only start in O (15 years)

• Muon collider experiments:  fast timing at 10 ps level needed to reject 
beam-induced background  [N. Pastrone, input symposium 19/2/21]

Roger Forty TOF technologies 18

O. Hartbrich et al, LOI Snowmass 2021

T. Hemmick, IAS-HEP 14/1/2021

ALICE3

STOPGAP

EIC 

TOP bar



• Cherenkov radiation is prompt, ideal for ultimate timing:  detect photons rather than charge

• Adding timing to RICH detectors:  only available for particles which are above threshold 
→ main use is for background suppression there, at least for gaseous radiators  
Room for clever ideas with aerogel?  but few photons → use solid quartz  (synthetic fused silica)

• Excellent performance ~ 20 ps, but for a small system—how can this be achieved over large areas?

4. Cherenkov-based detectors
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ATLAS Forward TOF:  L-shaped bars 

ToF

SiT: 3D Pixels
50μm(x)×250μm(y)
σx≃7 μm/track

ToF: Cerenkov 
4 Trains × 4 Bars
σt≃30 ps/Bar

217 m

T. Sykora, INSTR2020

~5 mm

Another example:
EMPHATIC t0 counter



LAPPD development
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ANNIE

20 µm pores

LAPPDs

TTS σ = 64 ps
< 4% after-pulse

V. Fischer, Lake Louise 2019

• One approach is to develop large-area picosecond-level photodetectors
and use to time Cherenkov light produced in their entrance window

• LAPPDTM development:  use cheaper MCP-PMT components to limit cost
e.g. borosilicate float glass + ALD treatment, strip-line readout
Now commercialized by Incom Inc.

• Adopted by ANNIE (Accelerator Neutrino Neutron Interaction Experiment): 
water-Cherenkov neutrino experiment at Fermilab with 30 tons of 
Gadolinium-loaded water, to help in their muon reconstruction

• Also explored as a timing layer at shower-max in the LHCb calorimeter 
upgrade:  18.6 ps timing resolution achieved for 5.8 GeV e- test beam

• Second generation under development with capacitive-coupled anode
to allow pad readout more suitable for high-rate environments
Lifetime and B-field sensitivity? [see talk of K. Inami]

• Issue: although cheaper than traditional MCPs, they are not that cheap
Tiling a large area is currently still prohibitive, O(1 MCHF/m2)



DIRC evolution
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FDIRC

TOP

Quartz refractive index  n vs Eg

Disc DIRC

21

600 300λ [nm]

Eg [eV]



n
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J. Fast, RICH 2016 position

• To avoid tiling the full area, propagate the photons to 
photodetectors located at the edge using 
total-internal reflection in highly-polished quartz  
radiator  [see previous talk, J. Schwiening]

• Issue to be handled:  chromatic dispersion of the 
material—trade-off between photon bandwidth 
to increase yield, vs resolution

From Eg=2–4eV, refractive index changes Δn=7%
Over 1m propagation → time difference = 300 ps

• FDIRC:  demonstrated use of photon timing to 
improve the ϴC resolution, adapting BaBar DIRC

• TOP: time-of-propagation detector of Belle II 
timing vs position enhances K-π separation

• Disc DIRC (PANDA):  move from bars to planar geometry

• These elements all brought together for TORCH concept



TORCH concept

Roger Forty TOF technologies 22

ϴC

detectors around edges of quartz plate
TORCH concept:  photon

Photon impacts
on detectors along 
each edge  (qz vs. x)
before dispersion

Track impact points
on quartz plate

M. Charles et al, NIMA 639 (2011) 173

• TORCH (Timing Of internally Reflected CHerenkov light) 
uses polished 1-cm thick quartz plate as radiator (~ 10% X0)
Measure precisely arrival time and position of individual 
photons, and combine to measure track arrival time

• Requires ~ 1 mrad precision on angle of photon, so that path 
length in radiator can be reconstructed:  focused with a 
cylindrical lens onto fine-granularity pixellised detector

• Key innovation:  measured Cherenkov angle used to correct 
dispersion:  n = 1/β cosϴC → effectively determine wavelength
for each photon  i.e. Cherenkov angle is used to correct timing
(cf DIRC, where timing is used to correct the Cherenkov angle)

• Resolution on photon arrival time has contributions from 
pixel size and photodetector (intrinsic + electronics)—target to 
keep each ~ 50 ps, giving overall resolution 70 ps per photon 

On average 30 photons detect per track through radiator 
→ per-track resolution of 10-15 ps — if independent  
some uncertainties (e.g. from track) common between p.e.



TORCH in LHCb
• Proposed for upgrade of LHCb in ~2027 for HL-LHC (Upgrade 2)

→ needs to handle luminosity ~ 1034 cm-2s-1

• Location after tracker, before RICH2 which will be upgraded at 
same time [see talk of C. D’Ambrosio] → flight path 10 m, area 30 m2

• Practicalities: subdivide into identical modules, reflection off 
sides to reach photodetectors at top/bottom edge

• Performance (full simulation): clean K-π separation up to 10 GeV
as required
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Full LHCb simulation (GEANT4-based)

LHCb  

Effect of modules:  signal foldedModule
K efficiency



• TORCH concept has been tested using ≈ full-size prototype

• Instrumented with two 512-channel MCP-PMT photodetectors
Campaign of measurements with low-momentum π/p beam from SPS
→ Target of 70 ps timing resolution per detected photon achieved

• Next step:  confirm that combination gives expected √Npe behaviour
→ prototype will be fully instrumented with MCP-PMTs for further tests

TORCH development
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.

Quartz
plate

Focusing 
element

MCPs + readout

TORCH prototype

Hitmap

M. Kreps, ICHEP2020

Project along time axis

σt = 70 ps/pe

Time vs position (for one MCP column)

(125 x 66 x 1 cm3)



Cherenkov-based TOF prospects
• Forward TOF of ATLAS is being upgraded for the next run

• TORCH features in Framework-TDR for LHCb upgrade  [→ LHCC, 9/2021]

• Interest for e+e- Higgs factory designs—the circular ones at least 
perhaps due to their phenomenal Z  bb statistics 
Conceptual layout for use of TORCH in an FCC-ee experiment:
Flight distance < LHCb → TOF lower, but TOP increases (they add)

• Also for future fixed-target/beam-dump experiment proposals:
e.g. TauFV:  search for LFV τ  µµµ in beam dump at the SPS

• Related concept: DTOF at Super Tau Charm facility  [B. Qi et al, arXiv:2104.05297]

similar to FTOF detector proposed for SuperB [N. Arnaud et al, NIMA 718 (2013) 557]
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G. Wilkinson, 
PBC workshop 
1/3/2021

Z. Liang, IAS-HEP 15/1/2021

Study of PID detectors for CEPC

M. Kreps, IAS-HEP

TauFV

FCC-ee
concept 

DTOF



General considerations
• End with discussion of some more general aspects relevant to 

different technologies, where R&D is in progress/needed 

Focus on issues relevant to this task force, illustrated with 
examples from work on TORCH that I know best

Radiator/detector material  [see talks of I. Idachi, J. Schwiening]

• Quartz:  needs high clarity, radiation tolerance, surface quality, 
polishing to sub-nm surface roughness—currently a cost driver

• Larger area plates: would allow module size 
to be adapted to track occupancy in LHCb

• RPC gas systems: [see TF1]  target leak free + 
gases with reduced environmental impact:
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Surface flatness
over TORCH plate
(1 µm contours)

Surface roughness Track distribution at TORCH in LHCb

B. Mandelli, TF1

Radiator plate of TORCH prototype 

125 x 66 x 1 cm3

Possible adapted module layout



• For silicon see TF3, for scintillator see TF5+6;  fast photodetectors: 
MCP-PMT and SiPM [see talks of K. Inami, S. Korpar, Y. Musienko] 

• For MCP:  push towards finer granularity, lifetime, rate capability, etc.  
Connectivity:  e.g. using anisotropic conductive foil (ACF)
Fast + longer lifetime MCPs relevant for future high-intensity kaon experiments

• For SiPM:  naturally fine granularity, but developments to improve 
active-area, radiation tolerance, noise, adjust spectral sensitivity

• Increasing quantum efficiency increases photon yield (+ occupancy) 
Cherenkov spectrum ~ flat with photon energy → extending toward 
UV can increase yield, but requires control of full optical system

Sensors
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TORCH MCP-PMT (developed with Photek)

Front Back Bare back

60 mm

M. van Dijk, CERN-THESIS-2016-039

Glue 
transmission

QE

PactanEpotek

Rate capabilityLifetime (Belle II MCPs)

K. Matsuoka, RICH2016

64 x 64 anode pads



Readout electronics [see TF7]

• NINO + HPTDC chipset developed in 2004 (0.25 μm CMOS) 
for ALICE TOF, and now widely used—also for single p.e.
although intended for the larger charge of MRPC signals
TDC:  32 channels for 100 ps bins, or 8 ch for 25 ps bins

• FastIC + PicoTDC successors recently developed (65 nm) 
[R. Ballabriga, J. Christiansen et al, Users meeting] —many potential clients

FastIC addresses NINO limitations (non-linearity of energy 
measurement, power consumption) suitable to operate with 
SiPM, PMT, MCP, i.e. a wide range of detector capacitances 
PicoTDC has increased channels (64 ch), finer binning (12/3ps) 

• ASICs for LHC timing layers (130 nm):  HGTD front-end ALTIROC
MTD-BTL uses TOFHIR ASIC developed from TOFPET 
MTD-ETL uses ETROC;  baseline for distributing the clock is to 
use DAQ links (lpGBT, 65 nm)

CMS developing a backup distribution system:  pure clock link 
Requires development of a rad-hard fan-out ASIC and board
and deployment of ~ 2000 additional fibres
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R. Gao, TWEPP 2016

FastIC

NINOHPTDC

Readout card

TORCH readout

https://indico.cern.ch/event/920703/


Start time
• To determine the time-of-flight a start time (t0) is required

• This may be achieved using timing information from the 
accelerator, but if bunches are long (~ 20 cm at the LHC) 
→ have to correct for vertex position

• Can use a dedicated detector, e.g. the T0 detector of ALICE
and those shown earlier from HADES and EMPHATIC
or e.g. a vertex detector (if equipped for fast timing)

• Alternatively use other tracks in the event, from the primary 
vertex—as also done by ALICE, due to limited T0 acceptance

• Most PV tracks are pions, so for TORCH the reconstruction 
logic can be reversed, and the start time determined from 
average of tracks from primary vertex assuming they are π

Outliers from other particle types removed, iteratively 

→ Should be able to achieve few-picosecond resolution on t0

from the detector itself, using the other tracks in the event
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Photons in TORCH from PV (single event)

ALICE T0 detector
Resolution on t0 (ALICE TOF)

F. Carnesecchi, arXiv:1806.03825

TOF technologies



Conclusions
• Development of TOF technologies is currently booming with general interest in fast timing

Provides a very compact particle ID detector, e.g. suitable for collider experiments

• Well-established technologies:  scintillator hodoscopes and MRPCs with resolution O (100 ps) 
good for covering low momenta up to a few GeV, e.g. complementing dE/dx from trackers

• Fast-timing detectors developed for the LHC upgrades:  fast scintillators and LGAD silicon 
aim for 30-50 ps resolution for pile-up suppression, will also provide TOF particle ID as a bonus 

• To achieve momentum coverage up to 10 GeV for K-π separation (to complement RICH coverage) 
requires pushing beyond current state-of-the-art, towards 10 ps resolution

– Cherenkov radiators very suitable:  PICOSEC, LAPPD and other approaches under development
– TORCH achieves this by combining many photons per track, with modest individual resolution
– Scintillators this fast (e.g. quantum R&D) would be breakthrough for TOF-PET:  mm-resolution
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• Long-term goal to reach picosecond-level timing, could satisfy the full particle ID needs

– Requires vigorous R&D on radiators, sensors, electronics  
– System aspects will become increasingly more important

→  Fast timing should feature strongly in the R&D Roadmap + reserve some space for new ideas! 


